Answer:
x = 180
Explanation:
First, you need to know
1. Double-angle formula:
cos(2x) =
![cos^(2)x - sin^(2)x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ynt7b3azsjs9jmfq5inzlma5ct0evhvqj6.png)
2. Pythagorean identity:
![cos^(2)x + sin^(2)x = 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/41r55k1m52pbtw22x62esiihzywd48q7rj.png)
Back to your problem, replacing the variable by the above:
![5cosx-sin(x)/(2)+7 = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jzbhbt2n6ht11wfpak9lopinzkteeekn4z.png)
By Double-angle formula
By Pythagorean identity
Given
![y = (x)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cj37d7iog19sy0x8kfbiihs0mt54inc2yw.png)
![5(1-2sin^(2)y) - 2siny + 7 = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w7xb2f18s2nvewfws11l4oqg8z7ez6q339.png)
![10sin^(2)y+2siny-12=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tjdoe3ils24m4w81lwvvs23ah9odguq0z5.png)
![5sin^(2)y+siny-6=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/409yb529s83o9aqizzy7scg09jsgcgwhu6.png)
, we know -1 < sinx < 1, for every x ∈ R
![siny = 1, y =90](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xxl0w27smkm1p32w35bpm6e0o10exxc3ho.png)
![y = (x)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cj37d7iog19sy0x8kfbiihs0mt54inc2yw.png)
![x = 180](https://img.qammunity.org/2020/formulas/mathematics/college/gm5mfozrjc80xw9pckv70kge4ggrqp0jzu.png)