Answer:
Subtract
(a) 19xy - 8xy = 11xy
(b) (2x^2-3y^2+7) - (x^2-y^2)(2x2−3y2+7)−(x2−y2) = x^{2}+2y^{2} +7x2+2y2+7
Simplify by combining like terms:
(a) (3x^2-5x+7) + (-38x^2+4x-3)+(11x^2+7x+8)(3x2−5x+7)+(−38x2+4x−3)+(11x2+7x+8) = -26x^2+6x+12−26x2+6x+12
(b) (x^2y^2 + 2x^2y+5) + (x^2y^2-3x^2y-11)(x2y2+2x2y+5)+(x2y2−3x2y−11) = 2x^2y^2-x^2y-82x2y2−x2y−8
Find the value of the expression:
25x^2 + 9y^2+30xy25x2+9y2+30xy when x = -8 and y -10
= 25(-8)^2+9(-10)^2+30*-8*-1025(−8)2+9(−10)2+30∗−8∗−10
= 4900