Answer:
![v_f = 15 (m)/(s)](https://img.qammunity.org/2020/formulas/physics/college/vq39bzeul0j6qb4o6u6n54qgycepkhddht.png)
Step-by-step explanation:
We can solve this problem using conservation of angular momentum.
The angular momentum
is
![\vec{L} = \vec{r} * \vec{p}](https://img.qammunity.org/2020/formulas/physics/college/400nfsp6fxq6u252xrejmm56knkrkmz82p.png)
where
is the position and
the linear momentum.
We also know that the torque is
![\vec{\tau} = \frac{d\vec{L}}{dt} = (d)/(dt) ( \vec{r} * \vec{p} )](https://img.qammunity.org/2020/formulas/physics/college/itw7udt7rfqxhoa418pnp2pb90ihpo742l.png)
![\vec{\tau} = (d)/(dt) \vec{r} * \vec{p} + \vec{r} * (d)/(dt) \vec{p}](https://img.qammunity.org/2020/formulas/physics/college/u84j3qog77omzhv80fe6g7lypopsl89e4e.png)
![\vec{\tau} = \vec{v} * \vec{p} + \vec{r} * \vec{F}](https://img.qammunity.org/2020/formulas/physics/college/21c09k34xhtguy3g3h08b97szgsiamg0tj.png)
but, as the linear momentum is
this means that is parallel to the velocity, and the first term must equal zero
![\vec{v} * \vec{p}=0](https://img.qammunity.org/2020/formulas/physics/college/eqnivdntju4vlpn6ay0v77u0sazyoyntuk.png)
so
![\vec{\tau} = \vec{r} * \vec{F}](https://img.qammunity.org/2020/formulas/physics/college/woq1bbiu9pe5nsx2xslgjuh121khfdj3uw.png)
But, as the only horizontal force is the tension of the string, the force must be parallel to the vector position measured from the vertical rod, so
![\vec{\tau}_(rod) = 0](https://img.qammunity.org/2020/formulas/physics/college/zogl10jn5vg3p2xi0qrtok15teyh3k4wb4.png)
this means, for the angular momentum measure from the rod:
![\frac{d\vec{L}_(rod)}{dt} = 0](https://img.qammunity.org/2020/formulas/physics/college/4h3q3m1r0cjr8yiz92fux26ntc4ta98z6d.png)
that means :
![\vec{L}_(rod) = constant](https://img.qammunity.org/2020/formulas/physics/college/csfspbh4cemshbcufkctmtq4dz16xb142v.png)
So, the magnitude of initial angular momentum is :
![| \vec{L}_(rod_i) | = |\vec{r}_i||\vec{p}_i| cos(\theta)](https://img.qammunity.org/2020/formulas/physics/college/jj6oqp9ixd6x75wd9rk5oyrlsrn5w3xazk.png)
but the angle is 90°, so:
![| \vec{L}_(rod_i) | = |\vec{r}_i||\vec{p}_i|](https://img.qammunity.org/2020/formulas/physics/college/noum05yyc0j0pq2epfu56k5tcmr6d9kuuo.png)
![| \vec{L}_(rod_i) | = r_i * m * v_i](https://img.qammunity.org/2020/formulas/physics/college/sdnkdfmtx794ol28kti9fyr77rcupimsud.png)
We know that the distance to the rod is 0.750 m, the mass 2.00 kg and the speed 5 m/s, so:
![| \vec{L}_(rod_i) | = 0.750 \ m \ 2.00 \ kg \ 5 \ (m)/(s)](https://img.qammunity.org/2020/formulas/physics/college/nmuki0kafqgfymf0y06hk9gvd4959qe5pf.png)
![| \vec{L}_(rod_i) | = 7.5 (kg m^2)/(s)](https://img.qammunity.org/2020/formulas/physics/college/1t0eeixt705f9rkrlj8hlvitedct376ihf.png)
For our final angular momentum we have:
![| \vec{L}_(rod_f) | = r_f * m * v_f](https://img.qammunity.org/2020/formulas/physics/college/17zbtg4qi3xjm841ymcrhuxat3q2juqgpp.png)
and the radius is 0.250 m and the mass is 2.00 kg
![| \vec{L}_(rod_f) | = 0.250 m * 2.00 kg * v_f](https://img.qammunity.org/2020/formulas/physics/college/noukypjlpveivjxl51jt17x4d9gp0m38g3.png)
but, as the angular momentum is constant, this must be equal to the initial angular momentum
![7.5 (kg m^2)/(s) = 0.250 m * 2.00 kg * v_f](https://img.qammunity.org/2020/formulas/physics/college/93udsqx4aw6i1h2lha0i970ckthhr14i1n.png)
![v_f = (7.5 (kg m^2)/(s))/( 0.250 m * 2.00 kg)](https://img.qammunity.org/2020/formulas/physics/college/e6bs9ip2452fw1rpt6o9txlbtd6pzhhzpp.png)
![v_f = 15 (m)/(s)](https://img.qammunity.org/2020/formulas/physics/college/vq39bzeul0j6qb4o6u6n54qgycepkhddht.png)