Answer:
a. the magnitude of the speed is 14.69 m/s
b. The direction is - 30 ° 57' 49''
Step-by-step explanation:
As there are no external forces in the horizontal direction, we know that the linear momentum must be conserved.
![\vec{p} = constant](https://img.qammunity.org/2020/formulas/physics/college/wajwhi5iikmhc81iqtabiwsds7z2yqrk90.png)
So, taking
our initial momentum and
our final momentum, we got:
The momentum of the system will be:
![\vec{p} = m_b \ \vec{v}_b + m_s \ \vec{v}_s](https://img.qammunity.org/2020/formulas/physics/college/65aspwpbqmuls9i0wadczcnbpvaw7ux2r6.png)
where
and
are the mass and the velocity of the bullet and
and
are the mass and the velocity of the stone.
Initial conditions
We know that the mass of the bullet is :
![m_b = 2.4 \ g = 2.4 \ 10^(-3) \ kg](https://img.qammunity.org/2020/formulas/physics/college/8hx273af1chhn2zhnkps8imb5170a6eixu.png)
taking the unit vector
pointing in the original direction of the bullet, the velocity will be:
![\vec{v}_(b_i) = 525 (m)/(s) \ \hat{i}](https://img.qammunity.org/2020/formulas/physics/college/rg4d13p2h42yk1r6kou22pgmf32cgorei9.png)
The mass of the stone is
![m_(s) = 0.100 \ kg](https://img.qammunity.org/2020/formulas/physics/college/ba91ur3t1b8vwae1augi0khd7g61rbmsg9.png)
as is at rest, the initial velocity will be zero
![\vec{v}_(s_i) = 0](https://img.qammunity.org/2020/formulas/physics/college/qencrfa2nhkmuuoty5wilws5p4ixo05lem.png)
So, our initial momentum will be
![\vec{p}_i = m_b \ \vec{v}_(b_i) + m_s \ \vec{v}_(s_i)](https://img.qammunity.org/2020/formulas/physics/college/smz98gpewjghj9pzg6zx1d59c5tnc1ap9k.png)
![\vec{p}_i = 2.4 \ 10^(-3) \ kg \ * 525 (m)/(s) \ \hat{i}+ 0.100 \ kg \ * 0](https://img.qammunity.org/2020/formulas/physics/college/8y5r36uuf7wn0766u5w18t88qynev0131m.png)
![\vec{p}_i = 1.26 (kg \ m)/(s) \ \hat{i}](https://img.qammunity.org/2020/formulas/physics/college/ev7izzi2bvhfh8kgjjkgu5qx2yykg5xs0g.png)
Final conditions
The masses will be the same.
Taking the unit vector
pointing in the final direction of the bullet, the velocity of the bullet is
![\vec{v}_(b_f) = 315 (m)/(s) \ \hat{i}](https://img.qammunity.org/2020/formulas/physics/college/row8b636wa0qtfxrpfzo1mbvqm6akn8r5l.png)
So, the final momentum will be
![\vec{p}_f = 2.4 \ 10^(-3) \ kg \ * 315 (m)/(s) \ \hat{j}+ 0.100 \ kg \ * \vec{v}_(s_f)](https://img.qammunity.org/2020/formulas/physics/college/l977t0xs0pbob0v7pjsftn643kbgnt5y7s.png)
![\vec{p}_f = 0.756 (kg \ m)/(s) \ \hat{j}+ 0.100 \ kg \ * \vec{v}_(s_f)](https://img.qammunity.org/2020/formulas/physics/college/iuzpg99u8ruhlfg01r8rk2e586matqai40.png)
Obtaining the velocity
Now, we use
and we obtain
![1.26 (kg \ m)/(s) \ \hat{i} = 0.756 (kg \ m)/(s) \ \hat{j}+ 0.100 \ kg \ * \vec{v}_(s_f)](https://img.qammunity.org/2020/formulas/physics/college/67x5bi09gq0a4dokuhg7lzt4hvi679ucx9.png)
working it a little
![0.100 \ kg \ * \vec{v}_(s_f) = 1.26 (kg \ m)/(s) \ \hat{i} - 0.756 (kg \ m)/(s) \ \hat{j}](https://img.qammunity.org/2020/formulas/physics/college/dcz07p4afsqgl7y4fpzgez6qtngd4pbf54.png)
![\vec{v}_(s_f) = ((1.26 (kg \ m)/(s) , - 0.756 (kg \ m)/(s)) )/( 0.100 \ kg)](https://img.qammunity.org/2020/formulas/physics/college/yybtf0rlgp3wldckegai2z1higmenl8uwy.png)
![\vec{v}_(s_f) = (12.6 (m)/(s) , - 7.56 (m)/(s))](https://img.qammunity.org/2020/formulas/physics/college/rch7tj9quuwfjrmk7ut5lpbwjjflqlbigb.png)
This is the final velocity of the stone. Now, we can obtain the magnitude using the Pythagorean theorem:
![|\vec{v}| = \sqrt{{v}_(x) ^2 + {v}_(y)^2}](https://img.qammunity.org/2020/formulas/physics/college/x4lbmcyo8cdoi5q0s8n9egdwb0wnqm5tbj.png)
![|\vec{v}_(s_f)| = \sqrt{(12.6 (m)/(s)) ^2 + (- 7.56 (m)/(s))^2}](https://img.qammunity.org/2020/formulas/physics/college/sjimtp30c3r9b7ztxun4vw9izpnzb4plmr.png)
![|\vec{v}_(s_f)| = 14.69 \ (m)/(s)](https://img.qammunity.org/2020/formulas/physics/college/cz6y9b154r6871oaf48ka8bxg5hkyuwby1.png)
We can obtain the angle as:
![\theta = arctan((v_y)/(v_x))](https://img.qammunity.org/2020/formulas/physics/college/z1no2d6dc1sep4kxtlr0crlbuqmfzjnnq5.png)
![\theta = arctan(( - 7.56 (m)/(s) )/( 12.6 (m)/(s) ))](https://img.qammunity.org/2020/formulas/physics/college/hg4sjfshy3hsefib8mj5blg0xwtl72485w.png)
![\theta = - 30 \° 57' 49''](https://img.qammunity.org/2020/formulas/physics/college/zpu67mkozqlmeob8iayr72ufzjqm2t47lu.png)