188k views
22 votes
The general solution of e x cosydx−e x sinydy=0 is :__________

User Adriane
by
3.6k points

1 Answer

5 votes

Answer:

General solution x = log | sec y | + C

Explanation:

Step(i):-

Given


e^(x) cosy dx - e^(x) sin y d y = 0


e^(x) (cosy dx = e^(x) sin y d y

cos y dx = sin y d y


dx = tan y d y

Step(ii):-

now integrating on both sides , we get


\int\limits {1} \, dx = \int\limits {tany} \, dy

by using formula


\int\limits {tany} \, dy = log | sec y | + C

x = log | sec y | + C

Final answer:-

General solution x = log | sec y | + C

User Hiren Kagrana
by
3.4k points