Remove square roots by taking squares:
10.
![√(3x+10)=5-2x](https://img.qammunity.org/2020/formulas/mathematics/college/t2n1448m7omtkyykxw0bhqzbwry3ukbu6r.png)
![(√(3x+10))^2=(5-2x)^2](https://img.qammunity.org/2020/formulas/mathematics/college/4vys0g5fda30lww3f02jtv2jtjibuak9gm.png)
![3x+10=25-20x+4x^2](https://img.qammunity.org/2020/formulas/mathematics/college/aksv9r1c9egk07wp25p70ujsx7i4hqvp2j.png)
Keep in mind that
is defined as long as
; in this case, we require
, or
.
![4x^2-23x+15=0](https://img.qammunity.org/2020/formulas/mathematics/college/1ter5jx648zklxsxyyy2yshkq7ns0vzl5p.png)
![(4x-3)(x-5)=0](https://img.qammunity.org/2020/formulas/mathematics/college/y97b9y754va4773344iaohcbzp4q81c6av.png)
![4x-3=0\text{ or }x-5=0](https://img.qammunity.org/2020/formulas/mathematics/college/mhm27mjmnj6gp2jyaezu3dfkkwxcbti4kz.png)
![x=\frac34\text{ or }x=5](https://img.qammunity.org/2020/formulas/mathematics/college/fsqb9sfm2iwda14pzuojd4w2a2yezr4gwo.png)
Both of these solutions are greater than -10/3, so they are both valid.
11.
![4x=√(1-6x)](https://img.qammunity.org/2020/formulas/mathematics/college/6cnawufuvfg4qh4tmdxsu4v40m337c3clc.png)
This tells us we need to have
, or
.
![(4x)^2=(√(1-6x))^2](https://img.qammunity.org/2020/formulas/mathematics/college/utkvdxr78ml8366z2i65q2dbvil9wy8m4r.png)
![16x^2=1-6x](https://img.qammunity.org/2020/formulas/mathematics/college/sqjlm74bgiv6mab0z4g2yizgesp9g7uxxs.png)
![16x^2+6x-1=0](https://img.qammunity.org/2020/formulas/mathematics/college/o1joeohe4j36d8wesphsiiy9eqcqqmdkdb.png)
![(8x-1)(2x+1)=0](https://img.qammunity.org/2020/formulas/mathematics/college/zjjtcma9v3q77umln7g4kbil9qotrn82hf.png)
![8x-1=0\text{ or }2x+1=0](https://img.qammunity.org/2020/formulas/mathematics/college/n2cfi2yu7ra8tn8hou8a7tzuv3xkw3esss.png)
![x=\frac18\text{ or }x=-\frac12](https://img.qammunity.org/2020/formulas/mathematics/college/mjfnnkx3xdd0q9tjix30x1xnxx0q4srnz0.png)
Both of these are valid solutions.