Answer:
(1) Let, P represents the size of the bacteria culture in t hours,
According to the question,
![(dP)/(dt)\propto P](https://img.qammunity.org/2020/formulas/biology/college/h3g0jqbf7z52gbvterycjrxoa6cwhlmeff.png)
![(dP)/(dt)=kP](https://img.qammunity.org/2020/formulas/mathematics/college/v4913az9wtifcsai5vmgqqhxc8ddlh84i9.png)
![(dP)/(P)=kdt](https://img.qammunity.org/2020/formulas/mathematics/college/d8asbda4h65ffyth62grg7q9gs0gspm22y.png)
By integrating,
![\ln P=kt + C](https://img.qammunity.org/2020/formulas/mathematics/college/2f5vaqb2omx2z8m6h07kvu8juwz4yrhiu7.png)
![P=e^(kt+C)](https://img.qammunity.org/2020/formulas/biology/college/7qu3rqth0sg1f8xinrllid8wuo2hvlmmwc.png)
![P=e^(kt).e^C](https://img.qammunity.org/2020/formulas/mathematics/college/2fpee5z1rhkms90xuuwucvan5575z3yggs.png)
Where
,
We have,
at t = 0, P = 200,
![\implies 200=P_0 e^0\implies P_0 = 200](https://img.qammunity.org/2020/formulas/mathematics/college/bf8tnuukx7fd6djtf2q2yji41d69cfy0ks.png)
at t = 6, P = 1200
![1200=200 e^(6k)\implies k = 0.299](https://img.qammunity.org/2020/formulas/mathematics/college/ohf49t5whevn8yhaiqthxtwo46s85frjov.png)
Hence, the required function would be,
![P=200 e^(0.299t)](https://img.qammunity.org/2020/formulas/mathematics/college/re9fd3g161nnsb0uxz5gqrbtt671m3bhnj.png)
(2) if t = 7,
The population would be,
![P=200 e^(0.299* 7)=1621.84126567\approx 1622](https://img.qammunity.org/2020/formulas/mathematics/college/dafc62it4s1hau79t813kslt51b0kacqyh.png)
(3) If P = 1750,
![1750=200 e^(0.299t)\implies t = 7.254](https://img.qammunity.org/2020/formulas/mathematics/college/3hr97auxdstpowbja6xkyi43koeqcgu06b.png)
Hence, it will take about 8 years for the population to reach 1750.