Answer:
There are 364 ways of filling the offices.
Explanation:
In this case, the order of filling of the offices does not matter, so, we can figure out the different ways of filling the offices by using the combination formula:
![C^(n) _(r)=(n!)/((n-r)!r!)](https://img.qammunity.org/2020/formulas/mathematics/high-school/cl2b8e0gxmab7f66sezl1i6o1xjjs3uk0b.png)
where n=14 (number of members)
r=3 number of offices
n!=n·(n-1)·(n-2)·...·3·2·1
![C^(14) _(3)=(14!)/((14-3)!3!)=(14*13*12*11*10*9*8*7*6*5*4*3*2*1)/((11*10*9*8*7*6*5*4*3*2*1)*(3*2*1))=(14*13*12)/(3*2*1) =364](https://img.qammunity.org/2020/formulas/mathematics/high-school/aj0nrznos8wnmblxba32s7tg1odspibbpz.png)