Answer:
3.75 seconds
Step-by-step explanation:
Given:
y₀ = 2.00 m
y = 0 m
v₀ᵧ = 20.0 sin 60.0°
aᵧ = -9.8 m/s²
Find: t
y = y₀ + v₀ᵧ t + ½ aᵧ t²
0 = 2.00 + (20.0 sin 60.0°) t + ½ (-9.8) t²
0 = 2 + 10√3 t − 4.9 t²
Solve with quadratic method:
t = [ -10√3 ± √(300 − 4(-4.9)(2)) ] / -9.8
t = (-10√3 ± √378.4) / -9.8
t ≈ -0.218, 3.75
Since t > 0, the ball lands after approximately 3.75 seconds.