Answer:
c)
=40Kg
Explanation:
To find the answer we have to put all the options in the same unit, so we are going to use Kg.
μ
![=1.10^(-6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/3263c76q5owbnz5wkr8aziyt8f94et8u1h.png)
Replacing the value of μ:
![2500.1.10^(-6) g=\\ 2500.10^(-6) g](https://img.qammunity.org/2020/formulas/mathematics/high-school/nb1v39sg3559xka3env77jxxjhi33w1rrt.png)
Observation: 1 g = 0.001 Kg, 1 g=
Kg
![2500.10^(-6) g=\\ =2500.10^(-6).10^(-3)Kg\\=2500.10^(-9)Kg](https://img.qammunity.org/2020/formulas/mathematics/high-school/ihpflteb2odxfs8nn6loayk8q1zfakrmm3.png)
![2500.10^(-9)Kg=0.000002500 Kg](https://img.qammunity.org/2020/formulas/mathematics/high-school/sj47fyyzrc0jzm0ohhf5nag0muruusi2am.png)
This number is very small so it's no suitable for weighing on an ordinary bathroom scale.
- b)
This value is already in kilograms,
But it's small. It's not suitable for weighing on an ordinary bathroom scale.
- c)
![4.10^(6) cg](https://img.qammunity.org/2020/formulas/mathematics/high-school/z1bn12i6r1753zt2bbyt3hblkayfxej8dq.png)
Centigrams: cg=
![1.10^(-5) Kg](https://img.qammunity.org/2020/formulas/mathematics/high-school/14angilhdmti9ghxyg9aa7a0rvivmege7r.png)
Then,
![4.10^(6) cg=4.10^(6).10^(-5)Kg\\ =4.10^(1) Kg\\ =40 Kg](https://img.qammunity.org/2020/formulas/mathematics/high-school/tsfwf1nxbrijbjyjfrwgyo58r7eonvnxoj.png)
This value it's suitable for weighing on an bathroom scale.
- d)
![5,5.10^(8) dg](https://img.qammunity.org/2020/formulas/mathematics/high-school/crainx6080e281jwix8qj9kskoxiku8okl.png)
Decigrams: dg=
![1.10^(-4) Kg](https://img.qammunity.org/2020/formulas/mathematics/high-school/u99gr3bdv95qyjmzm7v75k1y5a5e0l904t.png)
Then,
![5,5.10^(8) dg=5,5.10^(8).10^(-4)Kg\\ =5,5.10^(4) Kg\\ =55000 Kg](https://img.qammunity.org/2020/formulas/mathematics/high-school/rjlg9jpq77l4ok12ndmi4vs2n8b8h887cd.png)
This value is too big for a bathroom scale. Usually the limit for an ordinary bathroom scale is between 140-150 Kgs.
- e)
![2,0.10^(7) mg](https://img.qammunity.org/2020/formulas/mathematics/high-school/4oohl13kujxyhmzecqhwbbmja2b7nkofv3.png)
Miligrams: mg=
![1.10^(-6) Kg](https://img.qammunity.org/2020/formulas/mathematics/high-school/st3clsnfl1eno1ib0ctnpgl7li8n4ab374.png)
Then,
![2,0.10^(7) mg=2,0.10^(7).10^(-6)Kg\\ =2,0.10^(1) Kg\\ =20 Kg](https://img.qammunity.org/2020/formulas/mathematics/high-school/cuphhxpxd559eiyh69nn8c4wv0mt17pugh.png)
This could be a right answer too but it all depends on the scale. There are some scales whose minimum weight is 30Kg. So the right answer is c)