103k views
2 votes
Find the perimeter of quadrilateral PQRS with the vertices P(2,4), Q(2,3), R(-2,-2), and S(-2,3).

User Sandeep R
by
6.0k points

1 Answer

1 vote

Answer:


P=16.53\ units

Explanation:

we know that

The perimeter of quadrilateral PQRS is equal to the sum of its four length sides

the formula to calculate the distance between two points is equal to


d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}

we have

the vertices P(2,4), Q(2,3), R(-2,-2), and S(-2,3)

step 1

Find the distance PQ

P(2,4), Q(2,3)

substitute in the formula


d=\sqrt{(3-4)^(2)+(2-2)^(2)}


d=\sqrt{(-1)^(2)+(0)^(2)}


d=√(1)


dPQ=1\ unit

step 2

Find the distance QR

Q(2,3), R(-2,-2)

substitute in the formula


d=\sqrt{(-2-3)^(2)+(-2-2)^(2)}


d=\sqrt{(-5)^(2)+(-4)^(2)}


dQR=√(41)\ units

step 3

Find the distance RS

R(-2,-2), and S(-2,3)

substitute in the formula


d=\sqrt{(3+2)^(2)+(-2+2)^(2)}


d=\sqrt{(5)^(2)+(0)^(2)}


dRS=5\ units

step 4

Find the distance PS

P(2,4), S(-2,3)

substitute in the formula


d=\sqrt{(3-4)^(2)+(-2-2)^(2)}


d=\sqrt{(-1)^(2)+(-4)^(2)}


dPS=√(17)\ units

step 5

Find the perimeter


P=PQ+QR+RS+PS

substitute the values


P=1+√(41)+5+√(17)


P=6+√(41)+√(17)


P=16.53\ units

User Joshua Hyatt
by
6.6k points