Answer: second option.
Explanation:
We need the remember that:
![\sqrt[n]{a^n}=a](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7n3agtxpmdkpp0ixo9p04d3znbyw20xqj1.png)
Therefore, the radicand (In this case
) must be a perfect cube in order to get a whole number.
Remember that a perfect cube are the numbers that have exact cube roots. Therefore, "y" must be a factor of 144.
Now, we need to descompose 144 into its prime factors:
![144=2*2*2*2*3*3=2^4*3^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qh30qmy5tawksgdbe1j9wbo5xc4xo4s5e3.png)
Then, the factors of 144 are:
![1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144](https://img.qammunity.org/2020/formulas/mathematics/middle-school/67yz3cjxaa52hielksu2e46nl9w59sbjyv.png)
Substitute values into
to check:
![(144)/(1)=144](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ulx4y64cocq7x2koh51tyf3qxt5wvkjwx7.png)
![(144)/(2)=72](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2m49e5qu477wzja32hhfbwryj48e08n9vx.png)
![(144)/(3)=48](https://img.qammunity.org/2020/formulas/mathematics/middle-school/utodymv0rlewuriu8izofn8qonav5s8mhh.png)
![(144)/(4)=36](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rp1miwomujtwpybupyyasfy3al3oeplhrn.png)
![(144)/(6)=24](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o4b0th6qh2h4a0eifkuhilmqsq8d2nutvr.png)
![(144)/(8)=18](https://img.qammunity.org/2020/formulas/mathematics/middle-school/natyq0lp2wx669ynyyq0f14lu34jhthotq.png)
![(144)/(9)=16](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6vufm849em0zt3krq9gsgtzk0bcbjby390.png)
![(144)/(12)=12](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c3hsr66e9n0p7hit8vwvrtgqax6kak59th.png)
![(144)/(16)=9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rop41us6qv7iwjwmz4r6v0bahmx9t4kjmt.png)
(Perfect cube:
)
![(144)/(24)=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wr6krxa1vzrhk2mdsxr0dy5yyvdroyp6uv.png)
![(144)/(36)=4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1rdftk84zk0jogyba1mui1uc00pzfwxi1w.png)
![(144)/(48)=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oohnzbhvufyfk2lq6h2h1h2k3xxy3qzmto.png)
![(144)/(72)=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1kl4b4mjmkxsbzsiohz7a5l1a7ejtxt55r.png)
(Perfect cube:
)
Therefore, for 2 different values of "y" (
and
)
is a whole number.