Answer:
a)The linear function for
is:
![P(t) = 2000 - 100*t](https://img.qammunity.org/2020/formulas/mathematics/college/iiv8kad0r20bh2hr4pp3urikzy1nxi2q6g.png)
b)The exponential function for
is:
![P(t) = 2000e^(-0.055t)](https://img.qammunity.org/2020/formulas/mathematics/college/7cn5389h7lji2cj57cf9ymwl46qf10wfx9.png)
Explanation:
(a) Suppose that P(t) is a linear function. Find a formula for P(t):
can be modeled by a linear function in the following format.
, in which
is the initial number of bacteria cells in the dish, t is the time and r is the rate that the number decreases.
Since the dish initially contains 2000 bacteria cells,
![P_(0) = 2000](https://img.qammunity.org/2020/formulas/mathematics/college/2dwdb9oxyf7rpbuvzwlnk7wbselvthe0r7.png)
We have
![P(t) = 2000 - r*t](https://img.qammunity.org/2020/formulas/mathematics/college/ocrcd1dz92kitfdd5e4b1gmj79wykjvtdb.png)
An antibiotic is introduced and after 4 hour, there are now 1600 bacteria cells present. So
. With this information, we can find the value of r.
![P(t) = 2000 - r*t](https://img.qammunity.org/2020/formulas/mathematics/college/ocrcd1dz92kitfdd5e4b1gmj79wykjvtdb.png)
![1600 = 2000 - r*(4)](https://img.qammunity.org/2020/formulas/mathematics/college/ff8t920dm9fjxnhkreobljh4rp364k5017.png)
![4r = 400](https://img.qammunity.org/2020/formulas/mathematics/college/661h0cbaoqfr788xttz3io9tl40ab6vlwd.png)
![r = (400)/(4)](https://img.qammunity.org/2020/formulas/mathematics/college/lwn9nabzza0figwaeauul2o5ke5zcfwgto.png)
![r = 100](https://img.qammunity.org/2020/formulas/mathematics/college/3pqf73g3g63kj769kmx52056jshiex23op.png)
So, the linear function for
is:
![P(t) = 2000 - 100*t](https://img.qammunity.org/2020/formulas/mathematics/college/iiv8kad0r20bh2hr4pp3urikzy1nxi2q6g.png)
b) Suppose that P(t) is an exponential function. Find a formula for P(t)
can also be modeled by an exponential function in the following format:
![P(t) = P_(0)e^(rt)](https://img.qammunity.org/2020/formulas/mathematics/college/szvksyrn6a5y4r3bskxwoljqjfgbo9vfim.png)
The values mean the same as in a). We use the fact that
to find r.
![P(t) = 2000e^(rt)](https://img.qammunity.org/2020/formulas/mathematics/college/m6yl7i0qww0v6ap7ejz2kdo6mrt5cbgwp7.png)
![1600 = 2000e^(4r)](https://img.qammunity.org/2020/formulas/mathematics/college/7zm98bwuxqpk1bux7cc30nt0o59oc7n5al.png)
![e^(4r) = (1600)/(2000)](https://img.qammunity.org/2020/formulas/mathematics/college/tglzdy21mqlrw08bg9uxejvuh7oce6ri2n.png)
![e^(4r) = 0.8](https://img.qammunity.org/2020/formulas/mathematics/college/ebwefder1m6ol646xn9i3xbe8alvrmxh3h.png)
![ln e^(4r) = ln 0.8](https://img.qammunity.org/2020/formulas/mathematics/college/8e2ziao8ttj3xf9zh62gyog5mhyumx9ad9.png)
![4r = -0.22](https://img.qammunity.org/2020/formulas/mathematics/college/xbdvrwvuq31wwvghjvi5s3jnnwn9w7h38a.png)
![r = (-0.22)/(4)](https://img.qammunity.org/2020/formulas/mathematics/college/cob0zhi5wocuogi15kfk5knf3vgax918qp.png)
![r = -0.055](https://img.qammunity.org/2020/formulas/mathematics/college/71jwr1m6b3v6w6toe3syfxcmjc0znpvr5y.png)
So, the exponential function for
is:
![P(t) = 2000e^(-0.055t)](https://img.qammunity.org/2020/formulas/mathematics/college/7cn5389h7lji2cj57cf9ymwl46qf10wfx9.png)