Answer:
The components of the moving frame is (8.07c, -2, 3, 9.493)
Solution:
As per the question:
Velocity of moving frame w.r.t original frame
0.85c
Point 'a' of an event in one reference frame corresponds to the (x, y, z, t) coordinates of the plane
a = (0, - 2, 3, 5)
Now, according the the question, the coordinates of moving frame, say (X, Y, Z, t'):
New coordinates are given by:
X =
![\frac{x - v_(m)t}{\sqrt{1 - (v_(m)^(2))/(c^(2))}}](https://img.qammunity.org/2020/formulas/physics/college/mvjmny44kcr3nst2d7xsk1zh8drqn56fkc.png)
X =
![\frac{0 - 0.85c* 5}{\sqrt{1 - ((0.85c)^(2))/(c^(2))}}](https://img.qammunity.org/2020/formulas/physics/college/ttofxrff9kk4j0u5hr5k47c8droc5vdh2l.png)
X =
![8.07 c](https://img.qammunity.org/2020/formulas/physics/college/1ywzzty10gcpj039l2bl0pwjjymg7uxrux.png)
Now,
Y = y = - 2
Z = z = 3
Now,
![t' = \frac{t - (vx)/(c)^(2)}{\sqrt{1 - ((v)/(c))^(2)}}](https://img.qammunity.org/2020/formulas/physics/college/gst8pdnolaaucnpzww36uhkpmy5woyyk7y.png)
![t' = \frac{5 - 0}{\sqrt{1 - ((0.85c)/(c))^(2)}} = 9.493 s](https://img.qammunity.org/2020/formulas/physics/college/zt8z2wb419gg1r8wbblegmsbddtv1zrv6i.png)