Answer:
The minimum time to get the car under max. speed limit of 79 km/h is 2.11 seconds.
Step-by-step explanation:
![a=(V_f-V_0)/(t)](https://img.qammunity.org/2020/formulas/physics/college/gg8tc8596dsxx1gs47ylsf2dzyjgem0dhm.png)
isolating "t" from this equation:
![t=(V_f-V_0)/(a)](https://img.qammunity.org/2020/formulas/physics/college/56js79ffwtbpwzjb6l1d8qjz71b93qz3b2.png)
Where:
a=
(negative because is decelerating)
![V_0= 114 km/h](https://img.qammunity.org/2020/formulas/physics/college/atjdgnzy4bkev8micnevipbblzwyzizjrx.png)
First we must convert velocity from km/h to m/s to be consistent with units.
![79(km)/(h)*(1000m)/(1 km)*(1h)/(3600s)=(79*1000)/(3600)=21.94 m/s](https://img.qammunity.org/2020/formulas/physics/college/1pz8pmtubk463zz3tlxqt1mr1r5lmdevnm.png)
![114(km)/(h)*(1000m)/(1 km)*(1h)/(3600s)=(114*1000)/(3600)=31.67 m/s](https://img.qammunity.org/2020/formulas/physics/college/iingfnscb6cenyu1hmf9tpp5tzlf9p1qm9.png)
So;
![t=(V_f-V_0)/(a)=(21.94 m/s-31.66m/s)/(-4.6 m/s^2)=2.11 s](https://img.qammunity.org/2020/formulas/physics/college/nrsm9ivggdtl5d3oza0q2agal7pedjyr6f.png)