Answer: The de-Broglie's wavelength of a hydrogen molecule is
![3.26\AA](https://img.qammunity.org/2020/formulas/chemistry/college/4ycb94xkohyt0bu5qaqycs2yujfakgjf7y.png)
Step-by-step explanation:
Kinetic energy is the measure of temperature of the system.
The equation used to calculate kinetic energy of a particle follows:
![E=(3)/(2)kT](https://img.qammunity.org/2020/formulas/chemistry/college/vn3kfeaq2cm8nre8xlrhm9nw9344e4vbxc.png)
where,
E = kinetic energy of the particles = ?
k = Boltzmann constant =
![1.38* 10^(-23)J/K](https://img.qammunity.org/2020/formulas/chemistry/high-school/5aqqp8nkgnaq9dcpm0bgo4wkocono8uott.png)
T = temperature of the particle = 30 K
Putting values in above equation, we get:
![E=(3)/(2)* 1.38* 10^(-23)J/K* 30K\\\\E=6.21* 10^(-22)J](https://img.qammunity.org/2020/formulas/chemistry/college/1c45x7jlfi6ym1zi7nfwndzdgpnofsalup.png)
- Calculating the mass of 1 molecule of hydrogen gas:
Conversion factor used: 1 kg = 1000 g
1 mole of hydrogen gas has a mass of 2 grams or
According to mole concept:
number of molecules occupy 1 mole of a gas.
As,
number of hydrogen molecules has a mass of
![2* 10^(-3)kg](https://img.qammunity.org/2020/formulas/chemistry/college/5irdatw5fgeuowbamfhtn56xqju49fqrm4.png)
So, 1 molecule of hydrogen will have a mass of =
![(2* 10^(-3)kg)/(6.022* 10^(23))* 1=3.32* 10^(-27)kg](https://img.qammunity.org/2020/formulas/chemistry/college/383jj8hj01ikwqtmx2hpsuotm0mm4vz875.png)
- To calculate the wavelength of a particle, we use the equation given by De-Broglie's wavelength, which is:
![\lambda=(h)/(√(2mE_k))](https://img.qammunity.org/2020/formulas/chemistry/college/tx2gcl1tulmg072vudbycimdskv69bw1ei.png)
where,
= De-Broglie's wavelength = ?
h = Planck's constant =
![6.624* 10^(-34)Js](https://img.qammunity.org/2020/formulas/chemistry/college/kqppbhkxrw5hqhkvu3z3z6oqm3rywsn0al.png)
m = mass of 1 hydrogen molecule =
![3.32* 10^(-27)kg](https://img.qammunity.org/2020/formulas/chemistry/college/4xyka4kkbdgqzwjx7dpybuh129or9pbean.png)
= kinetic energy of the particle =
![6.21* 10^(-22)J](https://img.qammunity.org/2020/formulas/chemistry/college/ev3a9vim8334bicff057ea8benftxi3yt0.png)
Putting values in above equation, we get:
![\lambda=\frac{6.624* 10^(-34)Js}{\sqrt{2* 3.32* 10^(-27)kg* 6.21* 10^(-22)J}}](https://img.qammunity.org/2020/formulas/chemistry/college/7f8e077rgz2y7czrc0k62apmkaiw7rrydy.png)
(Conversion factor:
)
Hence, the de-Broglie's wavelength of a hydrogen molecule is
![3.26\AA](https://img.qammunity.org/2020/formulas/chemistry/college/4ycb94xkohyt0bu5qaqycs2yujfakgjf7y.png)