Answer:
1.
![(dy)/(dt)=ky](https://img.qammunity.org/2020/formulas/mathematics/college/c259uwiwx691tzhbjfmksor7fy884a5slj.png)
2.543.6
Explanation:
We are given that
y(0)=200
Let y be the number of bacteria at any time
=Number of bacteria per unit time
![(dy)/(dt)\proportional y](https://img.qammunity.org/2020/formulas/mathematics/college/c1s4bx5hdq7t50bgdsaawa1eh4663o5e6d.png)
![(dy)/(dt)=ky](https://img.qammunity.org/2020/formulas/mathematics/college/c259uwiwx691tzhbjfmksor7fy884a5slj.png)
Where k=Proportionality constant
2.
,y'(0)=100
Integrating on both sides then, we get
![lny=kt+C](https://img.qammunity.org/2020/formulas/mathematics/college/ndtpf7pwccdnpedywdqd8m8dy8j0vyqf6d.png)
We have y(0)=200
Substitute the values then , we get
![ln 200=k(0)+C](https://img.qammunity.org/2020/formulas/mathematics/college/803e85w8n969bd35ooiiiyfocazgh1vzax.png)
![C=ln 200](https://img.qammunity.org/2020/formulas/mathematics/college/g6vyiyc3u1f7hspygmh2td7cfdnopuulva.png)
Substitute the value of C then we get
![ln y=kt+ln 200](https://img.qammunity.org/2020/formulas/mathematics/college/u916zmtyrodsg42gd91d5ho040mkvije2u.png)
![ln y-ln200=kt](https://img.qammunity.org/2020/formulas/mathematics/college/yvt6gkjs4gq0098bo9xrl23aythdow7wlo.png)
![ln(y)/(200)=kt](https://img.qammunity.org/2020/formulas/mathematics/college/lwokg108c41zx761w3ks3u48s9fvtkunny.png)
![(y)/(200)=e^(kt)](https://img.qammunity.org/2020/formulas/mathematics/college/qzglpf0l8g9thdx6dy1nqfzix0c0cfwai4.png)
![y=200e^(kt)](https://img.qammunity.org/2020/formulas/mathematics/college/sbflh6n8pfedgpa847r6d38p2fh4vr7h6n.png)
Differentiate w.r.t
![y'=200ke^(kt)](https://img.qammunity.org/2020/formulas/mathematics/college/m43j6irceojb1gve74c40owqacm7ewgpqf.png)
Substitute the given condition then, we get
![100=200ke^(0)=200 \;because \;e^0=1](https://img.qammunity.org/2020/formulas/mathematics/college/6xfhk1mfrgqv61ayc03ctxias5ehy0d13w.png)
![k=(100)/(200)=(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/7w71wade2z7djguklpiymnn7ok0oce2e3e.png)
![y=200e^{(t)/(2)}](https://img.qammunity.org/2020/formulas/mathematics/college/h4sf4gzgeendjdnhiusjztcqbzp3hrob86.png)
Substitute t=2
Then, we get
![y=200e^{(2)/(2)}=200e](https://img.qammunity.org/2020/formulas/mathematics/college/lkar6bqogf2i368tvq8awwdvniwqjtt60w.png)
![y=200(2.718)=543.6=543.6](https://img.qammunity.org/2020/formulas/mathematics/college/v0gtbi3f55nzq8ge0u061mnasf7spbg6fx.png)
e=2.718
Hence, the number of bacteria after 2 hours=543.6