Answer:
![\lambda=8.006* 10^(-11)\ m](https://img.qammunity.org/2020/formulas/physics/college/750j1h01ow72n6k4yzj1ckm19ikiv8r23j.png)
Step-by-step explanation:
Given that,
The speed of an electron,
![v=9.1* 10^6\ m/s](https://img.qammunity.org/2020/formulas/physics/college/zcwvk35n5gxbskrk0ayjxbfzhbyejkndod.png)
We need to find the wavelength of this electron. It can be calculated using De -broglie wavelength concept as :
![\lambda=(h)/(mv)](https://img.qammunity.org/2020/formulas/physics/college/ou6kytka95dqopwy19p3cjsxk7apyqjvql.png)
h is the Planck's constant
![\lambda=(6.63* 10^(-34))/(9.1* 10^(-31)* 9.1* 10^6)](https://img.qammunity.org/2020/formulas/physics/college/jftlxaryuicp5qhazjz35850bw6pobkfbu.png)
![\lambda=8.006* 10^(-11)\ m](https://img.qammunity.org/2020/formulas/physics/college/750j1h01ow72n6k4yzj1ckm19ikiv8r23j.png)
So, the wavelength of the electron is
. Hence, this is the required solution.