56.9k views
2 votes
Find a compact form for generating functions of the sequence 1, 8,27,... , k^3

User TommyBs
by
6.6k points

1 Answer

0 votes

This sequence has generating function


F(x)=\displaystyle\sum_(k\ge0)k^3x^k

(if we include
k=0 for a moment)

Recall that for
|x|<1, we have


\displaystyle\frac1{1-x}=\sum_(k\ge0)x^k

Take the derivative to get


\displaystyle\frac1{(1-x)^2}=\sum_(k\ge0)kx^(k-1)=\frac1x\sum_(k\ge0)kx^k


\implies\frac x{(1-x)^2}=\displaystyle\sum_(k\ge0)kx^k

Take the derivative again:


\displaystyle((1-x)^2+2x(1-x))/((1-x)^4)=\sum_(k\ge0)k^2x^(k-1)=\frac1x\sum_(k\ge0)k^2x^k


\implies\displaystyle(x+x^2)/((1-x)^3)=\sum_(k\ge0)k^2x^k

Take the derivative one more time:


\displaystyle((1+2x)(1-x)^3+3(x+x^2)(1-x)^2)/((1-x)^6)=\sum_(k\ge0)k^3x^(k-1)=\frac1x\sum_(k\ge0)k^3x^k


\implies\displaystyle(x+4x^3+x^3)/((1-x)^4)=\sum_(k\ge0)k^3x^k

so we have


\boxed{F(x)=(x+4x^3+x^3)/((1-x)^4)}

User Alphager
by
5.3k points