233k views
5 votes
Find ℒ{f(t)} by first using a trigonometric identity. (Write your answer as a function of s.)

f(t) = 16cos(t−π/6)

ℒ{f(t)} = ?

User Jkyadav
by
4.2k points

1 Answer

5 votes

Answer:


L\{f(t)\}=(8(\sqrt3s+1))/(s^2+1)

Explanation:

Given :
f(t)=16\cos (t-(\pi)/(6))

To find : ℒ{f(t)} by first using a trigonometric identity ?

Solution :

First we solve the function,


f(t)=16\cos (t-(\pi)/(6))

Applying trigonometric identity,
\cos (A-B)=\cos A\cos B+\sin A\sin B


f(t)=16(\cos t\cos ((\pi)/(6))+\sin t\sin((\pi)/(6))


f(t)=16((\sqrt3)/(2)\cos t+(1)/(2)\sin t)


f(t)=(16)/(2)(\sqrt3\cos t+\sin t)


f(t)=8(\sqrt3\cos t+\sin t)

We know,
L(\cos at)=(s)/(s^2+a^2) and
L(\sin at)=(a)/(s^2+a^2)

Applying Laplace in function,


L\{f(t)\}=8\sqrt3L(\cos t)+8L(\sin t)


L\{f(t)\}=8\sqrt3((s)/(s^2+1))+8((1)/(s^2+1))


L\{f(t)\}=(8\sqrt3s+8)/(s^2+1)


L\{f(t)\}=(8(\sqrt3s+1))/(s^2+1)

Therefore, The Laplace transformation is
L\{f(t)\}=(8(\sqrt3s+1))/(s^2+1)

User Mario Velasco
by
5.8k points