Answer with explanation:
The confidence interval for population mean is given by :-
![\hat{p}\pm z_(\alpha/2)\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}](https://img.qammunity.org/2020/formulas/mathematics/college/pxj5zva1u6igd7xybc6x9ei113i3mgmyt5.png)
, where
is the sample proportion, n is the sample size ,
is the critical z-value.
The values needed to calculate a confidence interval at the 99% confidence level are :
Given : Significance level :
![\alpha:1-0.99=0.01](https://img.qammunity.org/2020/formulas/mathematics/college/4luqlyffsmoibptr1pdun8gze7b60dqc4i.png)
Sample size : n=450
Critical value :
![z_(\alpha/2)=2.576](https://img.qammunity.org/2020/formulas/mathematics/college/xu4qa8f21pkyf4fo2ns7p8b8ensbc4vsoc.png)
Sample proportion:
![\hat{p}=(280)/(450)\approx0.62](https://img.qammunity.org/2020/formulas/mathematics/college/aqpzag08mw0eg25rntj78tdqcc6x9mogxx.png)
Now, the 99% confidence level will be :
![\hat{p}\pm z_(\alpha/2)\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\\\\=0.62\pm(2.576)\sqrt{(0.62(1-0.62))/(450)}\\\\\approx0.62\pm0.023\\\\=(0.62-0.023,\ 0.62+0.023)=(0.597,\ 0.643)](https://img.qammunity.org/2020/formulas/mathematics/college/7sdv45qjta0nxsy92yps7y7439xw1hw6p6.png)
Hence, the 99% confidence interval is
![(0.597,\ 0.643)](https://img.qammunity.org/2020/formulas/mathematics/college/jnrck00hix7vn0ohpawciy28h6hjwc7aud.png)