Answer:
a) The initial acceleration is 7.84 m/s²
b) The impact speed is 117.6 m/s
c) The height is 705.6 m
Step-by-step explanation:
a) The speed from A to B is:
v = u + at
Where
u = initial speed = 0
t = 10 s
Replacing:
v = 10t (eq. 1)
The vertical distance between A to B is:
(eq. 2)
From B to C, the time it take is equal to 20 s, then:
![h=vt+(1)/(2) at^(2)](https://img.qammunity.org/2020/formulas/physics/college/3w37rbvoebys0mb24svyh29828lmo93nxi.png)
Replacing eq. 1 and 2:
![-50a=(10a*20)-(1)/(2) *g*20^(2) \\-250a=-(1)/(2) *9.8*20^(2) \\a=7.84m/s^(2)](https://img.qammunity.org/2020/formulas/physics/college/5vgy4ful8ce9k7icnt36kulniz09yq9py2.png)
b) The impact speed is equal:
![v_(i) ^(2) =v^(2) +2gs](https://img.qammunity.org/2020/formulas/physics/college/icufby2h673wjmc1cbej5t0frskip49i9b.png)
Where
s = h = -50a
![v^(2) _(i) =(10a)^(2) +2*(-9.8)*(-50a)\\v=\sqrt{100a^(2)+980a } \\v=\sqrt{(100*7.84^(2))+(980*7.84) } =117.6m/s](https://img.qammunity.org/2020/formulas/physics/college/4vmrr66z5ugk8enkmcu1hmkcsbrcdohla7.png)
c) The height is:
![v_(i) ^(2) =v^(2) +2gs\\0=(10a)^(2) -2gs\\(10a)^(2) =2gs\\s=((10a)^(2) )/(2g) \\s=((10*7.84)^(2) )/(2*9.8) =313.6m](https://img.qammunity.org/2020/formulas/physics/college/twvb3iyid6aeusmmb03a8on7ochior03ey.png)
htotal = 313.6 + 50a = 313.6 + (50*7.84) = 705.6 m