Answer:
- The formula its
![f(t) \ = \ - \ 352 \ (\$ )/(years) \ t \ + \ \$ \ 2816](https://img.qammunity.org/2020/formulas/physics/college/qr1hrcrlwincxnt7e2681159fotrf30580.png)
- After 5 years, the computer value its $ 1056
Step-by-step explanation:
Obtaining the formula
We wish to find a formula that
- Starts at 2816.
![f(0 \ years) \ = \ \$ \ 2816](https://img.qammunity.org/2020/formulas/physics/college/63b67yfygftxqtl11vpimoj0tpgw2cqe3h.png)
- Reach 0 at 8 years.
![f( 8 \ years) \ = \ \$ \ 0](https://img.qammunity.org/2020/formulas/physics/college/cqpv97wcj7m9w02i5j7ag2l8ll86y8xwwx.png)
- Depreciates at a constant rate. m
We can cover all this requisites with a straight-line equation. (an straigh-line its the only curve that has a constant rate of change) :
,
where m its the slope of the line and b give the place where the line intercepts the y axis.
So, we can use this formula with the data from our problem. For the first condition:
![f ( 0 \ years ) = m \ (0 \ years) + b = \$ \ 2816](https://img.qammunity.org/2020/formulas/physics/college/mowmecucrp3wxw1277txx2kzo351vvabb8.png)
![b = \$ \ 2816](https://img.qammunity.org/2020/formulas/physics/college/omjwckm57pd07f9jydzv9v4mkvsmtbi5fr.png)
So, b = $ 2816.
Now, for the second condition:
![f ( 8 \ years ) = m \ (8 \ years) + \$ \ 2816 = \$ \ 0](https://img.qammunity.org/2020/formulas/physics/college/fu6k8ejlo70mm49uvu3z5q4y3xifb4s2kc.png)
![m \ (8 \ years) = \ - \$ \ 2816](https://img.qammunity.org/2020/formulas/physics/college/qqid1k4tc23clmidqd2wlc8ydijxektnd7.png)
![m = (\ - \$ \ 2816)/(8 \ years)](https://img.qammunity.org/2020/formulas/physics/college/oow6sruhyyx58umsbaeki0osmqxjft3w1k.png)
![m = (\ - \$ \ 2816)/(8 \ years)](https://img.qammunity.org/2020/formulas/physics/college/oow6sruhyyx58umsbaeki0osmqxjft3w1k.png)
![m = \ - \ 352 (\$ )/(years)](https://img.qammunity.org/2020/formulas/physics/college/1bwcq056y3d9i5uvhc1ddfguo6j9xwbsbd.png)
So, our formula, finally, its:
![f(t) \ = \ - \ 352 \ (\$ )/(years) \ t \ + \ \$ \ 2816](https://img.qammunity.org/2020/formulas/physics/college/qr1hrcrlwincxnt7e2681159fotrf30580.png)
After 5 years
Now, we just use t = 5 years in our formula
![f(5 \ years) \ = \ - \ 352 \ (\$ )/(years) \ 5 \ years \ + \ \$ \ 2816](https://img.qammunity.org/2020/formulas/physics/college/oodkdtre0uh7huzgsoyw4fp7dqs6r5capz.png)
![f(5 \ years) \ = \ - \$ \ 1760 + \ \$ \ 2816](https://img.qammunity.org/2020/formulas/physics/college/k5liad0zztz5sc77icxdt1np9f1175t7gb.png)
![f(5 \ years) \ = $ \ 1056](https://img.qammunity.org/2020/formulas/physics/college/wlgocbn2dp9kh0axs19dptwei4jrue34e5.png)