181k views
2 votes
Geometry: what is the perimeter of XYZ?

Geometry: what is the perimeter of XYZ?-example-1

1 Answer

3 votes

Answer:

The perimeter is
P=(15+√(65))\ units or
P=23.06\ units

Explanation:

we know that

The perimeter of triangle XYZ is equal to the sum of its length sides


P=XY+YZ+XZ

the formula to calculate the distance between two points is equal to


d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}

we have


X(0,2),Y(3,-2),Z(-7,-2)

step 1

Find the distance XY


X(0,2),Y(3,-2)

substitute the values in the formula


d=\sqrt{(-2-2)^(2)+(3-0)^(2)}


d=\sqrt{(-4)^(2)+(3)^(2)}


d=√(25)


dXY=5\ units

step 2

Find the distance YZ


Y(3,-2),Z(-7,-2)

substitute the values in the formula


d=\sqrt{(-2+2)^(2)+(-7-3)^(2)}


d=\sqrt{(0)^(2)+(-10)^(2)}


d=√(100)


dYZ=10\ units

step 3

Find the distance XZ


X(0,2),Z(-7,-2)

substitute the values in the formula


d=\sqrt{(-2-2)^(2)+(-7-0)^(2)}


d=\sqrt{(-4)^(2)+(-7)^(2)}


dXZ=√(65)\ units

step 4

Find the perimeter


P=XY+YZ+XZ

substitute


P=5+10+√(65)


P=(15+√(65))\ units ----> exact value


P=(15+8.06)=23.06\ units -----> approximate value

User Nico Martin
by
5.7k points