Answer:
of HA is 6.80
Step-by-step explanation:
![pK_(a)=-logK_(a)](https://img.qammunity.org/2020/formulas/chemistry/college/k1xxhjnh8urhj7kqaole8fhtt77e4dyv79.png)
Acid dissociation constant (
) of HA is represented as-
![K_(a)=([H^(+)][A^(-)])/([HA])](https://img.qammunity.org/2020/formulas/chemistry/college/zagzd1d9lkebolm87rlz12gkd8fco4umqf.png)
Where species inside third bracket represents equilibrium concentrations
Now, plug in all the given equilibrium concentration into above equation-
![K_(a)=((2.00* 10^(-4))* (2.00* 10^(-4)))/(0.250)](https://img.qammunity.org/2020/formulas/chemistry/college/vy6y4fp4hw3168qhnuae5lnbz5tv42ioyt.png)
So,
![K_(a)=1.6* 10^(-7)](https://img.qammunity.org/2020/formulas/chemistry/college/kqaocybobjm6oiulm5iegk14ztg9rgwmw7.png)
Hence
![pK_(a)=-log(1.6* 10^(-7))=6.80](https://img.qammunity.org/2020/formulas/chemistry/college/3tt3ud4tsnypndpoyqj9azompc6l6g580o.png)