186k views
0 votes
if vector u has lenght 70 and direction 40 degrees, and vector v has length 85 and direction 335 degrees what is the length and direction of vector u plus vector v

1 Answer

3 votes

Answer:

Magnitude of resultant = 131.15

Direction of resultant = 3.97°

Step-by-step explanation:

||u|| = 70

θ = 40°


\vec{u}_x=||u||cos\theta \\\Rightarrow \vec{u}_x=70cos40=53.62


\vec{u}_y=||u||sin\theta \\\Rightarrow \vec{u}_y=70sin40=44.99

||v|| = 85

θ = 335°


\vec{v}_x=||v||cos\theta \\\Rightarrow \vec{v}_x=85cos335=77.03


\vec{v}_y=||v||sin\theta \\\Rightarrow \vec{v}_y=85sin335=-35.92

Resultant


R=√(R_x^2+R_y^2)\\\Rightarrow R=\sqrt{(\vec{u}_x+\vec{v}_x)^2+(\vec{u}_y+\vec{v}_y)^2}\\\Rightarrow R =√((70cos40+85cos335)^2+(70sin40+85sin335)^2)\\\Rightarrow R =131.15


\theta=tan^(-1)(R_y)/(R_x)\\\Rightarrow \theta=tan^(-1)(70sin40+85sin335)/(70cos40+85cos335)\\\Rightarrow \theta=tan^(-1)0.069=3.97^(\circ)

Magnitude of resultant = 131.15

Direction of resultant = 3.97°

User Emmanuella
by
8.2k points