Answer:
For every n E N, when we divide n² by 7, the remainder is either 0, 1, 2, or 4.
Explanation:
Given information: n∈N and
.
To prove: For every n E N, when we divide n2 by 7, the remainder is either 0, 1, 2, or 4.
Proof:
Using basic remainder remainder theorem,
![remainder((n^2)/(7))=(remainder((n)/(7))* remainder((n)/(7)))(\text{mod }7)](https://img.qammunity.org/2020/formulas/mathematics/college/feegodyjyp68i068m1civ3gty3ht0w42md.png)
where, mod 7 is modulo 7. It means the remainder after dividing by 7.
If a natural number divide by 7 then the possible remainders are 0,1,2,3,4,5 and 6.
If remainder of n/7 is 0, then
![remainder((n^2)/(7))=(0* 0)(\text{mod }7)=0](https://img.qammunity.org/2020/formulas/mathematics/college/6oou5dt6egulcanbjpfmkfo5qhdlrgjyxe.png)
If remainder of n/7 is 1, then
![remainder((n^2)/(7))=(1* 1)(\text{mod }7)=1](https://img.qammunity.org/2020/formulas/mathematics/college/4zjrfcgh3804uj5v3vnte41dzf76k1kq59.png)
If remainder of n/7 is 2, then
![remainder((n^2)/(7))=(2* 2)(\text{mod }7)=4](https://img.qammunity.org/2020/formulas/mathematics/college/n1k6oq4msyaru9erxqam8u99nnw03jbjvs.png)
If remainder of n/7 is 3, then
![remainder((n^2)/(7))=(3* 3)(\text{mod }7)=9(\text{mod }7)=2](https://img.qammunity.org/2020/formulas/mathematics/college/bl1ywg86qugrjtedqsuhcvyhfakdvjecy8.png)
If remainder of n/7 is 4, then
![remainder((n^2)/(7))=(4* 4)(\text{mod }7)=16(\text{mod }7)=2](https://img.qammunity.org/2020/formulas/mathematics/college/34ea7xtjx5674ehx71ia76wgchddga3q58.png)
If remainder of n/7 is 5, then
![remainder((n^2)/(7))=(5* 5)(\text{mod }7)=25(\text{mod }7)=4](https://img.qammunity.org/2020/formulas/mathematics/college/lxtgtddnfjsyhqxg1iu1rytt3q2qj01nh6.png)
If remainder of n/7 is 6, then
![remainder((n^2)/(7))=(6* 6)(\text{mod }7)=36(\text{mod }7)=1](https://img.qammunity.org/2020/formulas/mathematics/college/ixvp2ez7alz0my2muh9ui4lz59f8by2v6e.png)
For every n E N, when we divide n2 by 7, the remainder is either 0, 1, 2, or 4.
Hence proved.