By first principles, the derivative is
![\displaystyle\lim_(h\to0)\frac{(x+h)^n-x^n}h](https://img.qammunity.org/2020/formulas/mathematics/middle-school/olw5uzg644ylipspoe591ytkux0ilkohma.png)
Use the binomial theorem to expand the numerator:
![(x+h)^n=\displaystyle\sum_(i=0)^n\binom nix^(n-i)h^i=\binom n0x^n+\binom n1x^(n-1)h+\cdots+\binom nnh^n](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o8qka5kpco76eyi5cktp7ewqy664ut7ek7.png)
![(x+h)^n=x^n+nx^(n-1)h+\frac{n(n-1)}2x^(n-2)h^2+\cdots+nxh^(n-1)+h^n](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yttvu2ege87gdc6q3w8bw07bz7k7wsx79g.png)
where
![\dbinom nk=(n!)/(k!(n-k)!)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ns0w7x9218i8h66fupji9bpckhc10ntxy3.png)
The first term is eliminated, and the limit is
![\displaystyle\lim_(h\to0)\frac{nx^(n-1)h+\frac{n(n-1)}2x^(n-2)h^2+\cdots+nxh^(n-1)+h^n}h](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w0x7qhky170ks6xutb6o880cjvjn1cp0x1.png)
A power of
in every term of the numerator cancels with
in the denominator:
![\displaystyle\lim_(h\to0)\left(nx^(n-1)+\frac{n(n-1)}2x^(n-2)h+\cdots+nxh^(n-2)+h^(n-1)\right)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9puvzfmiai63ltlk9ry8w6juzrrd9cxq0h.png)
Finally, each term containing
approaches 0 as
, and the derivative is
![y=x^n\implies y'=nx^(n-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jahhsnefeq67rx3ylkd936ud3zua2li9oi.png)