Step-by-step explanation:
a) Using Beer-Lambert's law :
Formula used :
where,
A = absorbance of solution = 0.22
C = concentration of solution =
![1 dm^3 = 1 L](https://img.qammunity.org/2020/formulas/chemistry/college/k4ryw8d27ssctbkwuvmgw77o9y5tl0dfgt.png)
l = length of the cell = 3.0 cm
= molar absorptivity of this solution = ?
Now put all the given values in the above formula, we get the molar absorptivity of this solution.
Therefore, the molar absorptivity of this solution is,
![1.93* 10^(4)M^(-1)cm^(-1)](https://img.qammunity.org/2020/formulas/chemistry/college/iuxhvazaswpe8d58cc37sc2lv91c35mvm4.png)
b)
![A=\log (I_o)/(I_t)](https://img.qammunity.org/2020/formulas/chemistry/college/vdjz56oejxk8d2yq64p8qo8ovq0eyymubp.png)
![T=(I_t)/(I_o)](https://img.qammunity.org/2020/formulas/chemistry/college/5jpij1vj1g82gcpqsobilhtehdomfzmv9w.png)
![A=\log (1)/(T)](https://img.qammunity.org/2020/formulas/chemistry/college/l4tlldvzo6crmtidg3uxzlo8itibmeoqvn.png)
A = 2 × 0.22 =0.44
= Intensities of Incident light and transmitted light respectively
T = Transmittance
![0.44=\log (1)/(T)](https://img.qammunity.org/2020/formulas/chemistry/college/vq5vmxsu8h7ucacqj9zuwze7ddlmumg53a.png)
T = 0.3630
c)
![I_o=x](https://img.qammunity.org/2020/formulas/chemistry/college/7osz66wtnyj1kj1y6pdd1q4cf5qmyhz17i.png)
![I_t=65\% of x=0.65 x](https://img.qammunity.org/2020/formulas/chemistry/college/3zeky4sx9jiyxpfht4nkeqa3cpjratfz5d.png)
Thickness of cell = l' =?
![c = 0.75 mol/ dm^3=0.75 mol/L=0.75 M](https://img.qammunity.org/2020/formulas/chemistry/college/w6hdnl6wd59jv3gpowghobpn63pe9q07kt.png)
![A=\log (I_o)/(I_t)=\epsilon * C* l](https://img.qammunity.org/2020/formulas/chemistry/college/3xob97dqt0gg061wsseb7bsyt8oliyvfsc.png)
![\log (x)/(0.65x)=0.163 M^(-1)cm^(-1)* 0.45 M* l'](https://img.qammunity.org/2020/formulas/chemistry/college/j6mhuoihxus18kf3l89kld8fpkmowo5hdt.png)
l' = 1.53 cm
d) No, we cannot calculate the absorbance at 590 nm from the given data. This is because absorbance at this wavelength can be observe experimentally.