Answer:
The uncertainty in energy during a time interval is
![2.52375*10^(-23)\ Mev](https://img.qammunity.org/2020/formulas/physics/college/1udgg73t5uew5abffy3qra2s5xrd31lxmx.png)
Step-by-step explanation:
Given that,
Time
![\Delta t= 10-23= 13 s](https://img.qammunity.org/2020/formulas/physics/college/734whuk8iuhxdaxl1b81yatcrriwx77mz6.png)
We need to calculate the uncertainty in energy
Using uncertainty principle
![\Delta E \Delta t \geq (\hbar)/(2)](https://img.qammunity.org/2020/formulas/physics/college/bra86kbcq5zjhxu72pwaf6zpwhxgv82pxg.png)
![\Delta E \geq(\hbar)/(2\Delta t)](https://img.qammunity.org/2020/formulas/physics/college/u2trrql2x828mvawahexxzxg82zdngou05.png)
Put the value into the relation
![\Delta E=(1.05*10^(-34))/(2*13)](https://img.qammunity.org/2020/formulas/physics/college/zibo7h6bo3but0a3q3hml9j9u73z4waore.png)
![\Delta E\geq 4.038*10^(-36)\ J](https://img.qammunity.org/2020/formulas/physics/college/v4wvqxihw0bkts1u3v8uwbv4higpdgqxt5.png)
![\Delta E\geq (4.038*10^(-36))/(1.6*10^(-19))](https://img.qammunity.org/2020/formulas/physics/college/id34rwb1arfydihbgxhmjyz71lpp5hy83n.png)
![\Delta E\geq 2.52375*10^(-17)\ ev](https://img.qammunity.org/2020/formulas/physics/college/nwo4dt3yd0m42rbsohg3prqw78ock3y40g.png)
![\Delta E\geq(2.52375*10^(-17))/(10^(6))\ MeV](https://img.qammunity.org/2020/formulas/physics/college/n0w5ubo31kib4d3a0zowg8daspboyruv5y.png)
![\Delta E\geq 2.52375*10^(-23)\ Mev](https://img.qammunity.org/2020/formulas/physics/college/p6l016hu2bgaidorwvu7lqdlf030i0l8hw.png)
Hence, The uncertainty in energy during a time interval is
![2.52375*10^(-23)\ Mev](https://img.qammunity.org/2020/formulas/physics/college/1udgg73t5uew5abffy3qra2s5xrd31lxmx.png)