Answer:
The rotational kinetic energy is 1/3 of the total kinetic energy of the cylinder.
Step-by-step explanation:
Since the kinetic energy of the cylinder will be composed of 2 parts
1) Kinetic energy due to translational motion.
2) Kinetic energy due to rotational motion of the cylinder.
Thus the total kinetic energy of the cylinder equals
![K.E=(1)/(2)mv^(2)+(1)/(2)I\omega ^(2)](https://img.qammunity.org/2020/formulas/physics/college/jq8d767wz0etzqm27ugirknfot0b9x1b03.png)
We know that for solid cylinder the moment of Inertia (I) is given by
![I_(cylinder)=(1)/(2)mr^(2)](https://img.qammunity.org/2020/formulas/physics/college/wf5ixwj9k3uogy0z6nm25o11a1jfn5mp86.png)
Thus applying values we have
![(K.E_(rolling))/(K.E)=((1)/(2)I\omega ^(2))/((1)/(2)mv^(2)+(1)/(2)I\omega ^(2))](https://img.qammunity.org/2020/formulas/physics/college/qwmq4vragg8532j2in4huru3eydy3lz5zx.png)
Now in rolling we know that
![v=r\omega](https://img.qammunity.org/2020/formulas/physics/college/fxyi9f0hnced6di1q7lmb1jkcmsixtglsw.png)
Applying values in the ration above we obtain
![(K.E_(rolling))/(K.E)=((1)/(2)* (1)/(2)* mr^(2)* (v^(2))/(r^(2)))/((1)/(2)mv^(2)+(1)/(2)* (1)/(2)* m* r^(2)* (v^(2))/(r^(2)))\\\\\therefore (K.E_(rolling))/(K.E)=(1)/(3)](https://img.qammunity.org/2020/formulas/physics/college/t3skbhseide1fo49dmjxagfwrhmwppdj4n.png)