Answer: 0.7030
Explanation:
Given : The population proportion for company's orders come from first-time customers : p=0.43
Sample size : n= 98
The test statistic for population proportion:-
![z=\frac{\hat{p}-p}{\sqrt{(p(1-p))/(n)}}](https://img.qammunity.org/2020/formulas/mathematics/high-school/qbe8s3uzi3o97g9woow5ls56mxv9q4kc05.png)
For ,
![\hat{p}=0.33](https://img.qammunity.org/2020/formulas/mathematics/high-school/wcxhei03wt2h7by49c49xtc4e9rzysipq9.png)
![z=\frac{0.33-0.43}{\sqrt{(0.43(1-0.43))/(98)}}\approx-2.00](https://img.qammunity.org/2020/formulas/mathematics/high-school/ne3m9ki2e6ys6l96kg4vw8ilgot1wwyth2.png)
For ,
![\hat{p}=0.46](https://img.qammunity.org/2020/formulas/mathematics/high-school/s96lkkpco1m9cwts8loab90wnt8krgzdbh.png)
![z=\frac{0.46-0.43}{\sqrt{(0.43(1-0.43))/(98)}}\approx0.60](https://img.qammunity.org/2020/formulas/mathematics/high-school/gpp1w5pbw62dkcogqyjx5m8maketk68may.png)
![\text{The p-value =}P(-2.00<z<0.60)=P(z<0.60)-P(z<-2.00)\\\\=0.7257469-0.0227501=0.7029968\approx0.7030](https://img.qammunity.org/2020/formulas/mathematics/high-school/7xfvrnqiwpjzr1q9eff5of0u03puv2iyto.png)
Hence, the probability that the sample proportion is between 0.33 and 0.46 is 0.7030.