Answer:
m∠EFG = 126°
m∠GFH = 54°
Explanation:
If ∠EFG and ∠GFH are a linear pair, then m∠EFG + m∠GFH = 180°
(look at the picture).
We have
m∠EFG = 5n + 16
m∠GFH = 2n + 10
Substitute:
(5n + 16) + (2n + 10) = 180 combine like terms
(5n + 2n) + (16 + 10) = 180
7n + 26 = 180 subtract 26 from both sides
7n + 26 - 26 = 180 - 26
7n = 154 divide both sides by 7
7n/7 = 154/7
n = 22
Insert the value of n into expressions that specify angle measures:
m∠EFG = 5n + 16 → m∠EFG = 5(22) + 16 = 110 + 16 = 126°
m∠GFH = 2n + 10 → m∠GFH = 2(22) + 10 = 44 + 10 = 54°