Answer:
![(0.21,\ 0.27)](https://img.qammunity.org/2020/formulas/mathematics/college/kczc1t2flra04e76h7c2un24kxrbn7kh8n.png)
Explanation:
The confidence interval estimate for the population proportion is given by :-
, where
is the sample proportion of success and ME is the margin of error.
Given : The proportion of computers that were repaired more than three times in the last two years :
![\hat{p}=0.24](https://img.qammunity.org/2020/formulas/mathematics/college/2v2volptq3igrssw6srnh9goas6285tg55.png)
Margin of error :
![ME=0.03](https://img.qammunity.org/2020/formulas/mathematics/college/6jdcth20lscyemge2mxuau75c8cu5m409x.png)
Now, the confidence interval estimate for the population mean will be :-
![0.24\pm0.03=(0.24-0.03,\ 0.24+0.03)=(0.21,\ 0.27)](https://img.qammunity.org/2020/formulas/mathematics/college/46cxtcrawtncb18iiztnu1jt2zbincirx3.png)
Hence, the 98% confidence interval estimate for the population mean using the Student's t-distribution =
![(0.21,\ 0.27)](https://img.qammunity.org/2020/formulas/mathematics/college/kczc1t2flra04e76h7c2un24kxrbn7kh8n.png)