51.3k views
2 votes
Consider the BVP

y''+(lamda)y=0 y'(0)=0, y'(pi/6)=0

a)assume lamda=0 and find the solution

b)assume lamda>0 and find the solution

c)assume lamda<0 and find the solution

d) Determine the eigenvalues and associated eigenfunctions corresponding the eigenvalues.

1 Answer

3 votes


y''+\lambda y=0

has the corresponding characteristic equation (CE)


r^2+\lambda=0

a. If
\lambda=0, then the CE has one root,
r=0, and so the general solution to the ODE is


y(t)=C_1+C_2t

Given that
y'(0)=y'\left(\frac\pi6\right)=0, and


y'(t)=C_2

it follows that
C_2=0, and so


\boxed{y(t)=C_1}

b. If
\lambda>0, then the CE has two complex roots,
r=\pm i\sqrt\lambda, and the general solution is


y(t)=C_1\cos(\lambda t)+C_2\sin(\lambda t)


\implies y'(t)=-\lambda C_1\sin(\lambda t)+\lambda C_2\cos(\lambda t)

With the given boundary values, we have


y'(0)=0\implies\lambda C_2=0\implies C_2=0


y'\left(\frac\pi6\right)=0\implies-\lambda C_1\sin\left(\frac{\lambda\pi}6\right)=0


\implies\sin\left(\frac{\lambda\pi}6\right)=0


\implies\frac{\lambda\pi}6=n\pi


\implies\lambda=6n

where
n\in\Bbb Z.

  • If
    \lambda is a (positive) multiple of 6, we have


y'\left(\frac\pi6\right)=0\implies-6nC_1\sin\left(\frac{6n\pi}6\right)=0\implies C_1=0

and the solution would be


\boxed{y(t)=0}

  • Otherwise, if
    \lambda is not a multiple of 6, we have


y'\left(\frac\pi6\right)=0\implies-\lambda C_1\sin\left(\frac{\lambda\pi}6\right)=0\implies C_1=0

so that we still get


\boxed{y(t)=0}

c. If
\lambda<0, then the CE has two real roots,
r=\pm\sqrt\lambda, so that the general solution is


y(t)=C_1e^(\sqrt\lambda\,t)+C_2e^(-\sqrt\lambda\,t)


\implies y'(t)=C_1\sqrt\lambda\,e^(\sqrt\lambda\,t)-C_2\sqrt\lambda\,e^(-\sqrt\lambda\,t)

From the boundary conditions we get


y'(0)=0\implies C_1\sqrt\lambda-C_2\sqrt\lambda=0\implies C_1=C_2


y'\left(\frac\pi6\right)=0\implies C_1\sqrt\lambda\,e^((\pi\sqrt\lambda)/6)-C_2\sqrt\lambda\,e^(-(\pi\sqrt\lambda)/6)=0\implies C_1e^((\pi\sqrt\lambda)/3)=C_2

from which it follows that
C_1=C_2=0, so again the solution is


\boxed{y(t)=0}

d. We only get eigenvalues in the case when
\lambda>0, as in part (b):


\boxed{\lambda=6n,\,n\in\{1,2,3,\ldots\}}

for which we get the corresponding eigenfunctions


\boxed{y(t)=\cos(6nt),\,n\in\{1,2,3,\ldots\}}

User Whatang
by
4.9k points