![y''+\lambda y=0](https://img.qammunity.org/2020/formulas/mathematics/college/a4x4dv03zwpdbyiyvszontyp9fsl19s40u.png)
has the corresponding characteristic equation (CE)
![r^2+\lambda=0](https://img.qammunity.org/2020/formulas/mathematics/college/4dx325mg4vi5dfx9645zcdzmr8mvxoqw99.png)
a. If
, then the CE has one root,
, and so the general solution to the ODE is
![y(t)=C_1+C_2t](https://img.qammunity.org/2020/formulas/mathematics/college/o7zkm99q20g7ozfbbej0m7jwfajg6hfpvi.png)
Given that
, and
![y'(t)=C_2](https://img.qammunity.org/2020/formulas/mathematics/college/3dy0beazb7ys0r0gi3kf0q4fhx66tavajx.png)
it follows that
, and so
![\boxed{y(t)=C_1}](https://img.qammunity.org/2020/formulas/mathematics/college/ufr9yl69ffb2w5qigejvmfiyrm9e0azfbm.png)
b. If
, then the CE has two complex roots,
, and the general solution is
![y(t)=C_1\cos(\lambda t)+C_2\sin(\lambda t)](https://img.qammunity.org/2020/formulas/mathematics/college/l1yizgewz5267ikovstag4jbqlmoqyd6ks.png)
![\implies y'(t)=-\lambda C_1\sin(\lambda t)+\lambda C_2\cos(\lambda t)](https://img.qammunity.org/2020/formulas/mathematics/college/350czs4h33hbrwam0vunm2ckkp9ffcwy0s.png)
With the given boundary values, we have
![y'(0)=0\implies\lambda C_2=0\implies C_2=0](https://img.qammunity.org/2020/formulas/mathematics/college/k6cljg5fp964ivbeka4o5xw9yzwwxhfk67.png)
![y'\left(\frac\pi6\right)=0\implies-\lambda C_1\sin\left(\frac{\lambda\pi}6\right)=0](https://img.qammunity.org/2020/formulas/mathematics/college/74ph8iay5mf9dbr1g8qluqynt7iczthgex.png)
![\implies\sin\left(\frac{\lambda\pi}6\right)=0](https://img.qammunity.org/2020/formulas/mathematics/college/4d9hldsfhbbbuaflytke8ku57as5fm1wbb.png)
![\implies\frac{\lambda\pi}6=n\pi](https://img.qammunity.org/2020/formulas/mathematics/college/35ofzwokgelfwvp888i4g7z15b7yaqyyn4.png)
![\implies\lambda=6n](https://img.qammunity.org/2020/formulas/mathematics/college/i072mfks4821tusxhmq0j3qk8cr9q9pqw7.png)
where
.
- If
is a (positive) multiple of 6, we have
![y'\left(\frac\pi6\right)=0\implies-6nC_1\sin\left(\frac{6n\pi}6\right)=0\implies C_1=0](https://img.qammunity.org/2020/formulas/mathematics/college/bb3oo29ehiyya6wils8v1fho65fz6v8c6q.png)
and the solution would be
![\boxed{y(t)=0}](https://img.qammunity.org/2020/formulas/mathematics/college/5gr4x7smbwgbijxs5m1gp90n0kte7ymodq.png)
- Otherwise, if
is not a multiple of 6, we have
![y'\left(\frac\pi6\right)=0\implies-\lambda C_1\sin\left(\frac{\lambda\pi}6\right)=0\implies C_1=0](https://img.qammunity.org/2020/formulas/mathematics/college/g16m27jcqaifrsij7yex0f7g9fxrvcns78.png)
so that we still get
![\boxed{y(t)=0}](https://img.qammunity.org/2020/formulas/mathematics/college/5gr4x7smbwgbijxs5m1gp90n0kte7ymodq.png)
c. If
, then the CE has two real roots,
, so that the general solution is
![y(t)=C_1e^(\sqrt\lambda\,t)+C_2e^(-\sqrt\lambda\,t)](https://img.qammunity.org/2020/formulas/mathematics/college/mfk15iaj9u8daoyzbz9tlcfcqo7wr5wm92.png)
![\implies y'(t)=C_1\sqrt\lambda\,e^(\sqrt\lambda\,t)-C_2\sqrt\lambda\,e^(-\sqrt\lambda\,t)](https://img.qammunity.org/2020/formulas/mathematics/college/f2ztbat17qr3i7lkdq3nal3f9h357eedwb.png)
From the boundary conditions we get
![y'(0)=0\implies C_1\sqrt\lambda-C_2\sqrt\lambda=0\implies C_1=C_2](https://img.qammunity.org/2020/formulas/mathematics/college/u845a5l2oqq83prcfzxa2gzeermj9lohiy.png)
![y'\left(\frac\pi6\right)=0\implies C_1\sqrt\lambda\,e^((\pi\sqrt\lambda)/6)-C_2\sqrt\lambda\,e^(-(\pi\sqrt\lambda)/6)=0\implies C_1e^((\pi\sqrt\lambda)/3)=C_2](https://img.qammunity.org/2020/formulas/mathematics/college/q1f0oomq20e0kjb6copbt3yg78jpsc3ymz.png)
from which it follows that
, so again the solution is
![\boxed{y(t)=0}](https://img.qammunity.org/2020/formulas/mathematics/college/5gr4x7smbwgbijxs5m1gp90n0kte7ymodq.png)
d. We only get eigenvalues in the case when
, as in part (b):
![\boxed{\lambda=6n,\,n\in\{1,2,3,\ldots\}}](https://img.qammunity.org/2020/formulas/mathematics/college/ewjrt8l175dnvij7cpwgp3nhml9i4sk2xi.png)
for which we get the corresponding eigenfunctions
![\boxed{y(t)=\cos(6nt),\,n\in\{1,2,3,\ldots\}}](https://img.qammunity.org/2020/formulas/mathematics/college/u07a233wkuttadhol1xfnfg67vf7ezexdz.png)