Answer: The average kinetic energy of helium atoms is
![1.222* 10^(-17)J](https://img.qammunity.org/2020/formulas/physics/college/tr9lm0o560gro7pqrjh3x9nfhvbfaapttx.png)
Step-by-step explanation:
To calculate the average kinetic energy of the atom, we use the equation:
![K=(3)/(2)kT](https://img.qammunity.org/2020/formulas/physics/college/o1x8h908h26xb73m9c9t6kxpgo339ps7hb.png)
where,
K = average kinetic energy = ?
k = Boltzmann constant =
![1.3807* 10^(-23)J/K](https://img.qammunity.org/2020/formulas/physics/college/h4wc4vlpee8mame7tw4ycfmllvn4vqt5af.png)
T = temperature =
![5.9* 10^5K](https://img.qammunity.org/2020/formulas/physics/college/km97w9iyx6na4wyj70a0y4nfrxboqomf7y.png)
Putting values in above equation, we get:
![K=(3)/(2)* 1.3807* 10^(-23)J/K* 5.9* 10^5K\\\\K=1.222* 10^(-17)J](https://img.qammunity.org/2020/formulas/physics/college/ge4qb4kmy03lmjhhyeb29xunkly1yxoam4.png)
Hence, the average kinetic energy of helium atoms is
![1.222* 10^(-17)J](https://img.qammunity.org/2020/formulas/physics/college/tr9lm0o560gro7pqrjh3x9nfhvbfaapttx.png)