Answer:
The solution lie in
![(-\infty,1)\cup(7,\infty)](https://img.qammunity.org/2020/formulas/mathematics/college/uz00le3w0o8opkjwii7v3uv0zimasi0utr.png)
Explanation:
Given : Inequality
![x^2-8x+7>0](https://img.qammunity.org/2020/formulas/mathematics/college/tvi3gyh76b2e3qf0owbybanlqfdnmlg9qq.png)
To find : Solve the inequality?
Solution :
First we convert the inequality into equation,
![x^2-8x+7=0](https://img.qammunity.org/2020/formulas/mathematics/college/9nbc8qm26tbd7a2ch836jauc47ey769aie.png)
Solving by middle term split,
![x^2-7x-x+7=0](https://img.qammunity.org/2020/formulas/mathematics/college/gvugmo8lol6dso3az2thuir2ruvwkh7yam.png)
![x(x-7)-1(x-7)=0](https://img.qammunity.org/2020/formulas/mathematics/college/ujhv7eoy9xaqy8jbr73dy24vzfuoj9vrr0.png)
![(x-7)(x-1)=0](https://img.qammunity.org/2020/formulas/mathematics/college/zdqozmuxvx7bvkjg7b3tvbe92o2iyq21br.png)
![x=7,1](https://img.qammunity.org/2020/formulas/mathematics/college/epeiyzoz6bskgfco6sp9lg2sedu677ylfl.png)
Use each root to create test intervals,
![x<1\\1<x<7\\x>7](https://img.qammunity.org/2020/formulas/mathematics/college/v0z7t8g7parbzr50eahqmporkuraufsai6.png)
For x<1, let x=0
![0^2-8(0)+7>0](https://img.qammunity.org/2020/formulas/mathematics/college/wa002aowqgzvmbtymcel5wqv0xbqblj00j.png)
![0-0+7>0](https://img.qammunity.org/2020/formulas/mathematics/college/tc1aesp8n63w2bx6z60emgas5xi3a0yvb1.png)
![7>0](https://img.qammunity.org/2020/formulas/mathematics/college/s68ky1msms09xisex662dlafo6blkpbd69.png)
True.
For 1<x<7, let x=3
![3^2-8(3)+7>0](https://img.qammunity.org/2020/formulas/mathematics/college/41ueww9jr8og7w7dv966cky59f53eyx7p5.png)
![9-24+7>0](https://img.qammunity.org/2020/formulas/mathematics/college/o1zjmm4hpjbocoyx8e7n51vj6kxofya3vj.png)
![-8>0](https://img.qammunity.org/2020/formulas/mathematics/college/oq09tz1xd53x076a3vts6ipe0z4vqasq9g.png)
False.
For x>7, let x=8
![8^2-8(8)+7>0](https://img.qammunity.org/2020/formulas/mathematics/college/dhod9bb77b07nwohe65kdclrpkldsg7nz0.png)
![64-64+7>0](https://img.qammunity.org/2020/formulas/mathematics/college/lzf227tf4gbc3m1o2n0pzb0z45bll7uamu.png)
![7>0](https://img.qammunity.org/2020/formulas/mathematics/college/s68ky1msms09xisex662dlafo6blkpbd69.png)
True.
Therefore, The inequality form is x<1 or x>7.
The interval notation is
![(-\infty,1)\cup(7,\infty)](https://img.qammunity.org/2020/formulas/mathematics/college/uz00le3w0o8opkjwii7v3uv0zimasi0utr.png)