233k views
4 votes
Factorise the following x^4+x

1 Answer

4 votes

Answer:


\large\boxed{x^4+x=x(x^3+1)=x(x+1)(x^2-x+1)}

Explanation:


x^4=x\cdot \underbrace{x\cdot x\cdot x}_(3)=x\cdot x^3\\\\x=x\cdot 1\\\\x^4+x=\bold{x}\cdot x^3+\bold{x}\cdot1=\bold{x}\cdot(x^3+1)\\\\\text{used the distriburtive property:}\ a(b+c)=ab+ac


\text{If you want complete factorise, then:}


x^3+1=x^3+1^3
\text{use}\ a^3+b^3 = (a + b)(a^2 - ab + b^2)


x^4+x=x(x^3+1)=x(x+1)(x^2+(x)(1)+1^2)=x(x+1)(x^2+x+1)

User Brayne
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories