25.6k views
5 votes
Find the general solution of

dz/dt=5ze^(sint)cost+2e^(sint)cost

User Jrmgx
by
5.4k points

1 Answer

6 votes

Answer:

The general solution of given differential equation is
(1)/(5)ln|5z+2|=e^(\sin t)+C.

Explanation:

The given differential equation is


(dz)/(dt)=5ze^(\sin t)\cos t+2e^(\sin t)\cos t

Taking out common factors.


(dz)/(dt)=(5z+2)e^(\sin t)\cos t

Using variable separable method, we get


(dz)/(5z+2)=e^(\sin t)\cos t dt

Integrate both sides.


\int(dz)/(5z+2)=\int e^(\sin t)\cos t dt


I_1=I_2 .... (1)

First solve LHS,


I_1=\int(dz)/(5z+2)

Substitute
5z+2=u


5(dz)/(du)=1


dz=(1)/(5)du


I_1=(1)/(5)\int(du)/(u)


I_1=(1)/(5)ln|u|+C_1


I_1=(1)/(5)ln|5z+2|+C_1

Now, solve RHS,


I_2=\int e^(\sin t)\cos t dt

Substitute
\sin t=v,


\cos t(dt)/(dv)=1


\cos tdt=dv


I_2=\int e^(v)dv


I_2=e^(v)+C_2


I_2=e^(\sin t)+C_2

Subtitle the values of I₁ and I₂ in equation (1).


(1)/(5)ln|5z+2|+C_1=e^(\sin t)+C_2


(1)/(5)ln|5z+2|=e^(\sin t)+C_2-C_1


(1)/(5)ln|5z+2|=e^(\sin t)+C

Therefore the general solution of given differential equation is
(1)/(5)ln|5z+2|=e^(\sin t)+C.

User Christian Lund
by
5.9k points