Answer:
![0.51*10^(-15)](https://img.qammunity.org/2020/formulas/mathematics/high-school/76vciq8ukmzc7eaenkaydkmenczsdqm6hy.png)
Explanation:
We consider the shape of nucleus and the atom to be sphere.
Also , we know that the Volume of sphere =
![V=(4\pi)/(3)r^3](https://img.qammunity.org/2020/formulas/mathematics/high-school/oxduzenvdfxewsouia4foxmtn7lsq28w9h.png)
Given : Radius of proton :
![r=1.0*10^(-3)\text{ em}](https://img.qammunity.org/2020/formulas/mathematics/high-school/kfq8sfr69l93017xfai8nor8vpoyh55f8n.png)
Since 1 em = 0.0042175176 metres
∴
![r=1*10^(-13)* 0.0042175176\approx4.22*10^(-16) \text{ m}](https://img.qammunity.org/2020/formulas/mathematics/high-school/cx9zl6288258zjgaczaelgubih8aj5y1yw.png)
Radius of atom :
![R=52.9 \text{ pm}](https://img.qammunity.org/2020/formulas/mathematics/high-school/faef09ilr65ntpsoehgv773dxkasu85443.png)
Since,
![1\ \text{pm}=1*10^(-12)](https://img.qammunity.org/2020/formulas/mathematics/high-school/rdrcntazgqj8s0zfpthp3hxoolf0o345fs.png)
∴Radius of atom :
![R=52.9*10^(-12) =5.29*10^(-11)\text{ m}](https://img.qammunity.org/2020/formulas/mathematics/high-school/e42vmgb25nlgbru1a22u5tojnes3i74txq.png)
Now, the fraction of the space within the atom is occupied by the nucleus :_
![(V(r))/(V(R))=((4\pi)/(3)(4.22*10^(-16) )^3)/((4\pi)/(3)(5.29*10^(-11))^3)\\\\=((4.22)/(5.29))^3*(10^(-48))/(10^(-33))\\\\\approx0.51*10^(-48+33)=0.51*10^(-15)](https://img.qammunity.org/2020/formulas/mathematics/high-school/u5aqpvj7sjr2el51cm9pqjz7z1l2m44042.png)