Answer with explanation:
Given : The critical path for the project has an expected duration of 112 days, and a standard deviation of 5 days.
i.e.
![\mu=112\ ;\ \sigma=5](https://img.qammunity.org/2020/formulas/mathematics/college/5j9dev78ne6bvexijc1lru72nsij5efdfd.png)
We assume that this a normal distribution.
Let x be the random variable that represents the time duration to complete the project.
z-score :
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/high-school/10fia1p0qwvlz4zhb867kzy3u7bscognwz.png)
For x= 115
![z=(115-112)/(5)=0.6](https://img.qammunity.org/2020/formulas/mathematics/college/8v1qvdqa0ex0fc3s2qnm0v81x8uhtqmc8i.png)
P-value :
![P(z<115)=P(z<0.6)=0.7257469\approx0.726](https://img.qammunity.org/2020/formulas/mathematics/college/eyreu3zn7snobzh5p2qgai2guxc22vmvt2.png)
Thus, the probability of finishing on time if the due date is 115 days is 0.726.
Also, for x= 120
![z=(120-112)/(5)=1.6](https://img.qammunity.org/2020/formulas/mathematics/college/3cxuwqyxg2lkxmpttb5t8crtcjhkmvze8r.png)
P-value :
![P(z>120)=P(z>1.6)=1-P(z<1.6)](https://img.qammunity.org/2020/formulas/mathematics/college/uwovq6h124d6wvjex6pzbx117nl26ybkqs.png)
![1-0.9452007=0.0547993\approx0.055](https://img.qammunity.org/2020/formulas/mathematics/college/mh31y4jv1fyqu70zdmc4w7751ozbj61gp8.png)
Hence, the probability that they will have to pay the penalty is 0.055 .