110k views
5 votes
It takes Carl 8 hours to plant his garden, but only 6 hours if his son helps him. How long would it take his son to plant the garden alone?

User Cdeerinck
by
4.9k points

2 Answers

3 votes

Answer:

24 hours

Explanation:

Let t represent time taken by Carl's son to complete the work alone.

Part of garden planted by Carl's son in 1 hour would be
(1)/(t).

We have been given that Carl can plant his garden in 8 hours, so part of garden planted by Carl in 1 hour would be
(1)/(8).

We have been given that Carl can plant his garden in 6 hours with his son, so part of garden planted by Carl and his son in 1 hour would be
(1)/(8)+(1)/(t)=(1)/(6).

Now, let us solve for t.


(1)/(8)-(1)/(8)+(1)/(t)=(1)/(6)-(1)/(8)


(1)/(t)=(1)/(6)-(1)/(8)

Make a common denominator:


(1)/(t)=(1*4)/(6*4)-(1*3)/(8*3)


(1)/(t)=(4)/(24)-(3)/(24)


(1)/(t)=(4-3)/(24)


(1)/(t)=(1)/(24)

Cross multiply:


1t=1*24


t=24

Therefore, it will take Carl's son 24 hours to plant the garden alone.

User Abhishek Sagar
by
5.2k points
5 votes

Answer: 24 hours

Explanation:

Given : Time taken by Carl to plant his garden alone = 8 hours

If his son helps him , then the time taken by them = 6 hours

Let t be the time taken by son to plant the garden alone , then we have the following equation :-


(1)/(6)=(1)/(t)+(1)/(8)\\\\\Rightarrow(1)/(t)=(1)/(6)-(1)/(8)\\\\\Rightarrow(1)/(t)=(4-3)/(24)=(1)/(24)\\\\\Rightarrow\ t=24

Hence, the son will take 24 hours to plant the garden alone.

User Swestner
by
5.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.