111k views
6 votes
If the sum of the measures of the interior

angles of a polygon is 1930°, how many sides
does it have?

1 Answer

3 votes

Answer:

Thus, the number of sides: n ≈ 13 (rounded to the nearest whole number).

Explanation:

We know that the formula of the sum of the measures of the interior angles of a polygon

Sum = (n-2) × 180°

where

n is the number of sides

In your case, since the sum of the interior angles is 1930°, then

1930° = (n-2) × 180°

so we can determine the number of sides n, such as

1930 / 180 = n-2

[1930 / 180] + 2 = n

n ≈ 12.7

If 12.7 rounded to the nearest whole number, then

n ≈ 13

Thus, the number of sides: n ≈ 13 (rounded to the nearest whole number).

User Chriszuma
by
7.3k points