Answer:
![(587.67,596.33)](https://img.qammunity.org/2020/formulas/mathematics/high-school/odh7cheald3kj9bpcladyhqavl87a6rddr.png)
Explanation:
The confidence interval for population mean is given by :-
![\overline{x}\ \pm\ z_(\alpha/2)(\sigma)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/high-school/dhcv28zw9jrfif2fy7sq1kyi2b71a9ipfg.png)
Given : Sample mean :
hours
Standard deviation
hours
Sample size : n=90, which is a large sample(n<30), so we use z-test.
Significance level:
![1-0.90=0.1](https://img.qammunity.org/2020/formulas/mathematics/college/fh9gzu26he6bgmwzlpm9fxosvc5v2nkpdy.png)
Critical value :
![z_(\alpha/2)=t_(22,0.025)=1.645](https://img.qammunity.org/2020/formulas/mathematics/high-school/6u6d9smdxv839ug592dlzgu4lrcbiefv0q.png)
Then , the confidence interval for population mean will be :-
![592\ \pm\ (1.645)(25)/(√(90))\\\\\approx592\pm4.33\\\\=(592-4.33,592+4.33)\\\\=(587.67,596.33)](https://img.qammunity.org/2020/formulas/mathematics/high-school/60to6ydy81iwbcui7b6z7dmaet309wkb14.png)
Hence, the 90% confidence interval for the mean life
of all light bulbs of this type. is
![(587.67,596.33)](https://img.qammunity.org/2020/formulas/mathematics/high-school/odh7cheald3kj9bpcladyhqavl87a6rddr.png)