113k views
0 votes
Sin 4x + sin 6x = 0 ​

User Kikettas
by
7.6k points

1 Answer

0 votes


\sin(4x)+\sin(6x)=0

Expand the arguments to include
5x:


\sin(5x-x)+\sin(5x+x)=0


(\sin(5x)\cos x-\sin x\cos(5x))+(\sin(5x)\cos x+\sin x\cos(5x))=0


2\sin(5x)\cos x=0

Then either


\sin(5x)=0

or


\cos x=0

In the first case, use the fact that
\sin0=\sin\pi=0 and that
\sin x has period
2\pi, so that


\sin(5x)=0\implies\begin{cases}5x=0+2n\pi\\5x=\pi+2n\pi\end{cases}\implies\boxed{x=\frac{2n\pi}5\text{ or }x=\frac{(2n+1)\pi}5}

where
n is any integer.

In the second case, we have
\cos\frac\pi2=\cos\frac{3\pi}2=0 and
\cos x also has period
2\pi, so that


\cos x=0\implies\begin{cases}x=\frac\pi2+2n\pi\\\\x=\frac{3\pi}2+2n\pi\end{cases}\implies\boxed{x=\frac{(4n+1)\pi}2\text{ or }\frac{(4n+3)\pi}2}

User TheHolyTerrah
by
8.8k points