169k views
2 votes
Determine the value of

(101*99) - (102*98) + (103*97) - (104*96) + ... + (149*51) - (150*50).

(without using calculator)​

1 Answer

2 votes

101 = 100 + 1

102 = 100 + 2

103 = 100 + 3

and so on, and

99 = 100 - 1

98 = 100 - 2

97 = 100 - 3

and so on. Then the
n-th term of the sum, where
n=1,2,3,\ldots, is


(-1)^(n-1)(100+n)(100-n)=(-1)^n(n^2-100)

We want to compute the sum,


(101\cdot99)-(102\cdot98)+\cdots+(149\cdot51)-(150\cdot50)=\displaystyle\sum_(n=1)^(50)(-1)^n(n^2-100)

We have


\displaystyle\sum_(n=1)^(50)(-1)^n(n^2-100)=\sum_(n=1)^(50)(-1)^nn^2-100\sum_(n=1)^(50)(-1)^n

but notice that in the last sum, we're just adding the same number of 1s and -1s together, so its value is 0 and


\displaystyle\sum_(n=1)^(50)(-1)^n(n^2-100)=\boxed{\sum_(n=1)^(50)(-1)^nn^2}

In case you're not familiar with the formula for the sum of consecutive squares, we can derive it here. Recall that


\displaystyle\sum_(n=1)^k1=k


\displaystyle\sum_(n=1)^kn=\frac{k(k+1)}2

Notice that


(n+1)^3-n^3=(n^3+3n^2+3n+1)-n^3=3n^2+3n+1

and that


\displaystyle\sum_(n=1)^k((n+1)^3-n^3)=(2^3-1^3)+(3^2-2^3)+\cdots+(k^3-(k-1)^3)+((k+1)^3-k^3)


\implies\displaystyle\sum_(n=1)^k((n+1)^3-n^3)=(k+1)^3-1

Then


(k+1)^3-1=\displaystyle\sum_(n=1)^k(3n^2+3n+1)


\displaystyle\sum_(n=1)^k3n^2=(k+1)^3-1-3\frac{k(k+1)}2-k


\displaystyle\sum_(n=1)^kn^2={k(k+1)(2k+1)}6

Now consider the cases where
n is either odd or even.

  • If
    n is odd, we can write
    n=2m-1, where
    m=1,2,3,\ldots,25. Then


\displaystyle\sum_(m=1)^(25)(-1)^(2m-1)(2m-1)^2=-\sum_(m=1)^(25)(4m^2-4m+1)=-\frac{2\cdot25\cdot26\cdot51}3+2\cdot25\cdot26-25


\displaystyle\sum_(m=1)^(25)(-1)^(2m-1)(2m-1)^2=-20,825

  • If
    n is even, we can write
    n=2m and so


\displaystyle\sum_(m=1)^(25)(-1)^(2m)(2m)^2=\sum_(m=1)^(25)4m^2=\frac{2\cdot25\cdot26\cdot51}3


\displaystyle\sum_(m=1)^(25)(-1)^(2m)(2m)^2=22,100

The original sum is obtained by adding the odd- and even-indexed sums together:


\displaystyle\sum_(n=1)^(50)(-1)^nn^2=-20,825+22,100=\boxed{1275}

User Skymt
by
5.8k points