Answer:
The length of arc OP is 1/8 the circumference of the circle
Explanation:
step 1
Find the circumference of the circle L
The circumference is equal to
![C=2\pi r](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kmguleyi3d7rsbh4zj0jg7p7fumid62phf.png)
we have
![r=5\ units](https://img.qammunity.org/2020/formulas/mathematics/high-school/1wmz2d42uu9mzq38tg92gbb60o2cwwwu8d.png)
substitute
![C=2\pi (5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/67fypu7lhd8bgcafdq5lo3kdfobl988e2e.png)
![C=10\pi\ units](https://img.qammunity.org/2020/formulas/mathematics/high-school/njc3ss14t01xhk14y6i432stunmr6d2p8z.png)
step 2
Find the length of arc OP
we know that the circumference of the circle subtends a central angle of 360 degrees
so
using proportion
Find out the length of the arc OP by a central angle of 45 degrees
Let
x -----> the length of arc OP
![(10\pi)/(360)=(x)/(45)\\\\x=10\pi(45)/360\\\\x=10\pi((1)/(8))\ units](https://img.qammunity.org/2020/formulas/mathematics/high-school/t89h7lpr1oi15toxay3culse609rr88763.png)
therefore
The length of arc OP is 1/8 the circumference of the circle