Answer:
![CI=(0.431,1.0376)](https://img.qammunity.org/2020/formulas/biology/high-school/r4wv3hg7bt14q4u6c76bfbibxa0fer1g1d.png)
Step-by-step explanation:
Given that:
The sample size , n = 7
The mean of the observation:
Mean = Sum of observation / Total number of observation
= (0.56+ 0.72+ 0.10 + 0.99 + 1.32 + 0.52 + 0.93) / 7 = 0.7343
The standard deviation:
![S.D. = \sqrt {\frac {\sum_(i=1)^(i=7)(x_i-\bar{x})^2}{n-1}}](https://img.qammunity.org/2020/formulas/biology/high-school/shan3fqlnztty2khg3ra3g4eogsxdu6m8f.png)
Calculating SD as:
![S.D. = \sqrt {\frac {(0.56-0.7343)^2+(0.72-0.7343)^2+.....+(0.52-0.7343)^2+(0.93-0.7343)^2}{7-1}}](https://img.qammunity.org/2020/formulas/biology/high-school/mkycnbd7ycs9xephshfpm17qe5nl0417sv.png)
SD = 0.3928
Degree of freedom = n-1 = 6
The critical value for t at 2% level of significance and 6 degree of freedom is 2.043.
So,
![90 \% \ confidence\ interval=Mean\pm Z* \frac {SD}{\sqrt {n}}](https://img.qammunity.org/2020/formulas/biology/high-school/hn9hzmw823fxia4mebb4y2ipt0t4x2ouko.png)
So, applying values , we get:
![CI=0.7343\pm 2.043* \frac {0.3928}{\sqrt {7}}](https://img.qammunity.org/2020/formulas/biology/high-school/izkhy1exi46wd4g7w3gh35tmotd5bhmdc0.png)
![CI=(0.431,1.0376)](https://img.qammunity.org/2020/formulas/biology/high-school/r4wv3hg7bt14q4u6c76bfbibxa0fer1g1d.png)