Answer:
(a) 0.2 m
(b) 3.744 x 10^6 N/C Rightwards
Step-by-step explanation:
q1 = 21 micro Coulomb = 21 x 10^-6 C
q2 = 47 micro Coulomb = 47 x 10^-6 c
r = 0.5 m
(a) Let the electric field is zero at a distance d at point P from the 21 micro Coulomb.
Electric field at P due to charge q1
![E_(1)=(K q_(1))/(d^(2))](https://img.qammunity.org/2020/formulas/physics/college/qtnscq5i277tbz4l4kaqmw7babkr65wt2p.png)
Where, K is Coulomb constant = 9 x 10^9 Nm^2/C^2
![E_(1)=(9* 10^(10)* 21* 10^(-6))/(d^(2))](https://img.qammunity.org/2020/formulas/physics/college/x4dhuun1fakvlbpisrxuub40crwybfemsj.png)
..... (1)
Electric field at P due to charge q2
![E_(1)=(K q_(2))/((r-d)^(2))](https://img.qammunity.org/2020/formulas/physics/college/1xl2fo6u86aemj1zb0b2c8aje6ar0zn721.png)
![E_(1)=(9* 10^(10)* 47* 10^(-6))/((r-d)^(2))](https://img.qammunity.org/2020/formulas/physics/college/gep6sfumxhe975ddcpoq8bv15adz2j4804.png)
..... (2)
Equate the equation (1) and equation (2), we get
1.496 d = r - d
1.496 d = 0.5 - d
2.496 d = 0.5
d = 0.2 m
(b) Let E1 be the electric field due to q1 at mid point P and E2 be the electric field due to q2 at mid point P.
![E_(1)=(9* 10^(9)* 21* 10^(-6))/(0.25* 0.25)](https://img.qammunity.org/2020/formulas/physics/college/7xsg8ildlmwrmtqq21cngybzvzbbt4c9n4.png)
E1 = 3024 x 10^3 N/C
![E_(2)=(9* 10^(9)* 47* 10^(-6))/(0.25* 0.25)](https://img.qammunity.org/2020/formulas/physics/college/85btj9ln98ccnrjoq64mqghn5766lnpycl.png)
E2 = 6768 x 10^3 N/C
The resultant electric field is
E = E2 - E1 = (6768 - 3024) x 10^3 = 3.744 x 10^6 N/C Rightwards