98.6k views
2 votes
Solve the equation x^3 y^'" + 5x^2 y" + 7xy' + 8y = 0

1 Answer

4 votes

Make the substitution
t=\ln x, then compute the derivatives of
y with respect to
t via the chain rule.

  • First derivative


(\mathrm dy)/(\mathrm dx)=(\mathrm dy)/(\mathrm dt)(\mathrm dt)/(\mathrm dx)


\implies(\mathrm dy)/(\mathrm dx)=\frac1x(\mathrm dy)/(\mathrm dt)

  • Second derivative

Let
f(t)=(\mathrm dy)/(\mathrm dt).


(\mathrm d^2y)/(\mathrm dx^2)=(\mathrm d)/(\mathrm dx)\left[\frac fx\right]=(x(\mathrm df)/(\mathrm dx)-f)/(x^2)


(\mathrm df)/(\mathrm dx)=(\mathrm df)/(\mathrm dt)(\mathrm dt)/(\mathrm dx)=\frac1x(\mathrm d^2y)/(\mathrm dt^2)


\implies(\mathrm d^2y)/(\mathrm dx^2)=\frac1{x^2}\left((\mathrm d^2y)/(\mathrm dt^2)-(\mathrm dy)/(\mathrm dt)\right)

  • Third derivative

Let
g(t)=(\mathrm df)/(\mathrm dt)=(\mathrm d^2y)/(\mathrm dt^2).


(\mathrm d^3y)/(\mathrm dx^3)=(\mathrm d)/(\mathrm dx)\left[(g-f)/(x^2)\right]=(x^2\left((\mathrm dg)/(\mathrm dx)-(\mathrm df)/(\mathrm dx)\right)-2x(g-f))/(x^4)


(\mathrm dg)/(\mathrm dx)=(\mathrm dg)/(\mathrm dt)(\mathrm dt)/(\mathrm dx)=\frac1x(\mathrm d^3y)/(\mathrm dt^3)


\implies(\mathrm d^3y)/(\mathrm dx^3)=(x^2\left(\frac1x(\mathrm dg)/(\mathrm dt)-\frac1x(\mathrm df)/(\mathrm dt)\right)-2x(g-f))/(x^4)=\frac1{x^3}\left((\mathrm d^3y)/(\mathrm dt^3)-3(\mathrm d^2y)/(\mathrm dt^2)+2(\mathrm dy)/(\mathrm dt)\right)

Substituting
y(t) and its derivatives into the ODE gives a new one that is linear in
t:


\left((\mathrm d^3y)/(\mathrm dt^3)-3(\mathrm d^2y)/(\mathrm dt^2)+2(\mathrm dy)/(\mathrm dt)\right)+5\left((\mathrm d^2y)/(\mathrm dt^2)-(\mathrm dy)/(\mathrm dt)\right)+7(\mathrm dy)/(\mathrm dt)+8y=0


(\mathrm d^3y)/(\mathrm dt^3)+2(\mathrm d^2y)/(\mathmr dt^2)+4(\mathrm dy)/(\mathrm dt)+8y=0


y'''+2y''+4y'+8y=0

which has characteristic equation


r^3+2r^2+4r+8=(r+2)(r^2+4)=0

with roots
r=-2 and
r=\pm2i, so that the characteristic solution is


y_c(t)=C_1e^(-2t)+C_2\cos2t+C_3\sin2t

Replace
t=\ln x to solve for
y(x):


y_c(x)=C_1e^(-2\ln x)+C_2\cos(2\ln x)+C_3\sin(2\ln x)


\boxed{y(x)=(C_1)/(x^2)+C_2\cos(2\ln x)+C_3\sin(2\ln x)}

User SpliFF
by
5.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.